mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-02-14 06:07:45 +01:00
Edit readme.md file
This commit is contained in:
140
README.md
140
README.md
@@ -2,63 +2,105 @@
|
|||||||
|
|
||||||
[ArtStudies Projects](https://github.com/ArthurDanjou/artstudies) is a curated collection of academic projects completed throughout my mathematics studies. The repository showcases work in both _Python_ and _R_, focusing on mathematical modeling, data analysis, and numerical methods.
|
[ArtStudies Projects](https://github.com/ArthurDanjou/artstudies) is a curated collection of academic projects completed throughout my mathematics studies. The repository showcases work in both _Python_ and _R_, focusing on mathematical modeling, data analysis, and numerical methods.
|
||||||
|
|
||||||
The projects are organized into two main sections:
|
|
||||||
- **L3** – Third year of the Bachelor's degree in Mathematics
|
- **L3** – Third year of the Bachelor's degree in Mathematics
|
||||||
- **M1** – First year of the Master's degree in Mathematics
|
- **M1** – First year of the Master's degree in Mathematics
|
||||||
- **M2** – Second year of the Master's degree in Mathematics
|
- **M2** – Second year of the Master's degree in Mathematics
|
||||||
|
|
||||||
## 📁 File Structure
|
## 📁 Project Structure
|
||||||
|
|
||||||
- `L3`
|
### L3 - Bachelor's Degree
|
||||||
- `Analyse Matricielle`
|
|
||||||
- `Analyse Multidimensionnelle`
|
|
||||||
- `Calculs Numériques`
|
|
||||||
- `Équations Différentielles`
|
|
||||||
- `Méthodes Numériques`
|
|
||||||
- `Probabilités`
|
|
||||||
- `Projet Numérique`
|
|
||||||
- `Statistiques`
|
|
||||||
|
|
||||||
- `M1`
|
| Course | Description |
|
||||||
- `Data Analysis`
|
|--------|-------------|
|
||||||
- `General Linear Models`
|
| `Analyse Matricielle` | Matrix analysis and numerical linear algebra |
|
||||||
- `Monte Carlo Methods`
|
| `Analyse Multidimensionnelle` | Multivariate data analysis (PCA, MCA, CA) |
|
||||||
- `Numerical Methods`
|
| `Calculs Numériques` | Numerical computation methods |
|
||||||
- `Numerical Optimization`
|
| `Equations Différentielles` | Differential equations solving |
|
||||||
- `Portfolio Management`
|
| `Méthodes Numériques` | Numerical methods implementation |
|
||||||
- `Statistical Learning`
|
| `Projet Numérique` | Numerical project |
|
||||||
|
| `Statistiques` | Applied statistics |
|
||||||
|
|
||||||
- `M2`
|
### M1 - Master's Degree 1st Year
|
||||||
- `Clustering In Practice`
|
|
||||||
- `Data Visualisation`
|
|
||||||
- `Deep Learning`
|
|
||||||
- `Generative AI`
|
|
||||||
- `Linear Models`
|
|
||||||
- `Machine Learning`
|
|
||||||
- `Reinforcement Learning`
|
|
||||||
- `SQL`
|
|
||||||
- `Statistiques Non Paramétrique`
|
|
||||||
- `Unsupervised Learning`
|
|
||||||
- `VBA`
|
|
||||||
|
|
||||||
|
| Course | Description |
|
||||||
|
|--------|-------------|
|
||||||
|
| `Data Analysis` | Exploratory data analysis and visualization |
|
||||||
|
| `General Linear Models` | Regression and ANOVA models |
|
||||||
|
| `Monte Carlo Methods` | Statistical simulation techniques |
|
||||||
|
| `Numerical Methods` | Numerical algorithms implementation |
|
||||||
|
| `Numerical Optimisation` | Optimization algorithms |
|
||||||
|
| `Portfolio Management` | Financial portfolio optimization |
|
||||||
|
| `Statistical Learning` | Machine learning fundamentals |
|
||||||
|
|
||||||
|
### M2 - Master's Degree 2nd Year
|
||||||
|
|
||||||
|
| Course | Description |
|
||||||
|
|--------|-------------|
|
||||||
|
| `Advanced Machine Learning` | Advanced ML techniques |
|
||||||
|
| `Classification and Regression` | Supervised learning methods |
|
||||||
|
| `Clustering In Practice` | Unsupervised learning and clustering |
|
||||||
|
| `Data Visualisation` | Data visualization principles and tools |
|
||||||
|
| `Deep Learning` | Neural networks and deep architectures |
|
||||||
|
| `Enjeux Climatiques` | Climate issues and data analysis |
|
||||||
|
| `Generative AI` | Generative models (LLMs, diffusion) |
|
||||||
|
| `Linear Models` | Linear modeling techniques |
|
||||||
|
| `Machine Learning` | Core machine learning algorithms |
|
||||||
|
| `Reinforcement Learning` | Reinforcement learning algorithms |
|
||||||
|
| `SQL` | Database and SQL queries |
|
||||||
|
| `Statistiques Non Paramétrique` | Non-parametric statistics |
|
||||||
|
| `Time Series` | Time series analysis and forecasting |
|
||||||
|
| `Unsupervised Learning` | Unsupervised learning methods |
|
||||||
|
| `VBA` | Visual Basic for Applications |
|
||||||
|
|
||||||
## 🛠️ Technologies & Tools
|
## 🛠️ Technologies & Tools
|
||||||
|
|
||||||
- [Python](https://www.python.org): A high-level, interpreted programming language, widely used for data science, machine learning, and scientific computing.
|
### Python
|
||||||
- [R](https://www.r-project.org): A statistical computing environment, perfect for data analysis and visualization.
|
|
||||||
- [Jupyter](https://jupyter.org): Interactive notebooks combining code, results, and rich text for reproducible research.
|
- **Data Science**: `numpy`, `pandas`, `scipy`, `matplotlib`, `seaborn`, `plotly`, `geopandas`
|
||||||
- [Pandas](https://pandas.pydata.org): A data manipulation library providing data structures and operations for manipulating numerical tables and time series.
|
- **Machine Learning**: `scikit-learn`, `xgboost`, `catboost`, `shap`, `umap-learn`, `imblearn`
|
||||||
- [NumPy](https://numpy.org): Core package for numerical computing with support for large, multi-dimensional arrays and matrices.
|
- **Deep Learning**: `tensorflow`, `keras`, `torch`, `accelerate`
|
||||||
- [SciPy](https://www.scipy.org): A library for advanced scientific computations including optimization, integration, and signal processing.
|
- **LLM/RAG**: `langchain`, `langchain-community`, `sentence-transformers`, `faiss-cpu`
|
||||||
- [Scikit-learn](https://scikit-learn.org): A robust library offering simple and efficient tools for machine learning and statistical modeling, including classification, regression, and clustering.
|
- **Other**: `statsmodels`, `plotly`, `polars`, `requests`, `openpyxl`
|
||||||
- [TensorFlow](https://www.tensorflow.org): A comprehensive open-source framework for building and deploying machine learning and deep learning models.
|
|
||||||
- [Keras](https://keras.io): A high-level neural networks API, running on top of TensorFlow, designed for fast experimentation.
|
### R
|
||||||
- [Matplotlib](https://matplotlib.org): A versatile plotting library for creating high-quality static, animated, and interactive visualizations in Python.
|
|
||||||
- [Plotly](https://plotly.com): An interactive graphing library for creating dynamic visualizations in Python and R.
|
- **Core**: tidyverse, ggplot2, FactoMineR, caret, glmnet
|
||||||
- [Seaborn](https://seaborn.pydata.org): A statistical data visualization library built on top of Matplotlib, providing a high-level interface for drawing attractive and informative graphics.
|
- **Shiny**: RShiny for interactive web applications
|
||||||
- [RMarkdown](https://rmarkdown.rstudio.com): A dynamic tool for combining code, results, and narrative into high-quality documents and presentations.
|
- **Reporting**: RMarkdown for reproducible reports
|
||||||
- [FactoMineR](https://factominer.free.fr/): An R package focused on multivariate exploratory data analysis (e.g., PCA, MCA, CA).
|
|
||||||
- [ggplot2](https://ggplot2.tidyverse.org): A grammar-based graphics package for creating complex and elegant visualizations in R.
|
### Tools
|
||||||
- [RShiny](https://shiny.rstudio.com): A web application framework for building interactive web apps directly from R.
|
|
||||||
- [LangChain](https://langchain.com): A framework for developing applications powered by language models.
|
- **Jupyter** – Interactive notebooks for reproducible research
|
||||||
- and my 🧠.
|
- **RStudio** – R development environment
|
||||||
|
- **uv** – Fast Python package manager and virtual environment
|
||||||
|
- **ruff** – Python linter and formatter
|
||||||
|
- **lintr** – R linter
|
||||||
|
|
||||||
|
## 🚀 Getting Started
|
||||||
|
|
||||||
|
1. Clone the repository:
|
||||||
|
```bash
|
||||||
|
git clone <repository-url>
|
||||||
|
cd studies
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Set up the Python environment:
|
||||||
|
```bash
|
||||||
|
uv sync
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Run the linter:
|
||||||
|
```bash
|
||||||
|
ruff check .
|
||||||
|
```
|
||||||
|
|
||||||
|
4. Format code:
|
||||||
|
```bash
|
||||||
|
ruff format .
|
||||||
|
```
|
||||||
|
|
||||||
|
## 📝 Notes
|
||||||
|
|
||||||
|
- Some subprojects have isolated `pyproject.toml` files (e.g., `M2/Reinforcement Learning/project/`)
|
||||||
|
- Large datasets are not versioned—download via notebook code when needed
|
||||||
|
- Course materials and documentation are primarily in French
|
||||||
|
|||||||
Reference in New Issue
Block a user