Edit readme.md file

This commit is contained in:
2026-02-09 11:54:33 +01:00
parent 5b44bdcf1b
commit cd13946041

140
README.md
View File

@@ -2,63 +2,105 @@
[ArtStudies Projects](https://github.com/ArthurDanjou/artstudies) is a curated collection of academic projects completed throughout my mathematics studies. The repository showcases work in both _Python_ and _R_, focusing on mathematical modeling, data analysis, and numerical methods.
The projects are organized into two main sections:
- **L3** Third year of the Bachelor's degree in Mathematics
- **M1** First year of the Master's degree in Mathematics
- **M2** Second year of the Master's degree in Mathematics
## 📁 File Structure
## 📁 Project Structure
- `L3`
- `Analyse Matricielle`
- `Analyse Multidimensionnelle`
- `Calculs Numériques`
- `Équations Différentielles`
- `Méthodes Numériques`
- `Probabilités`
- `Projet Numérique`
- `Statistiques`
### L3 - Bachelor's Degree
- `M1`
- `Data Analysis`
- `General Linear Models`
- `Monte Carlo Methods`
- `Numerical Methods`
- `Numerical Optimization`
- `Portfolio Management`
- `Statistical Learning`
| Course | Description |
|--------|-------------|
| `Analyse Matricielle` | Matrix analysis and numerical linear algebra |
| `Analyse Multidimensionnelle` | Multivariate data analysis (PCA, MCA, CA) |
| `Calculs Numériques` | Numerical computation methods |
| `Equations Différentielles` | Differential equations solving |
| `Méthodes Numériques` | Numerical methods implementation |
| `Projet Numérique` | Numerical project |
| `Statistiques` | Applied statistics |
- `M2`
- `Clustering In Practice`
- `Data Visualisation`
- `Deep Learning`
- `Generative AI`
- `Linear Models`
- `Machine Learning`
- `Reinforcement Learning`
- `SQL`
- `Statistiques Non Paramétrique`
- `Unsupervised Learning`
- `VBA`
### M1 - Master's Degree 1st Year
| Course | Description |
|--------|-------------|
| `Data Analysis` | Exploratory data analysis and visualization |
| `General Linear Models` | Regression and ANOVA models |
| `Monte Carlo Methods` | Statistical simulation techniques |
| `Numerical Methods` | Numerical algorithms implementation |
| `Numerical Optimisation` | Optimization algorithms |
| `Portfolio Management` | Financial portfolio optimization |
| `Statistical Learning` | Machine learning fundamentals |
### M2 - Master's Degree 2nd Year
| Course | Description |
|--------|-------------|
| `Advanced Machine Learning` | Advanced ML techniques |
| `Classification and Regression` | Supervised learning methods |
| `Clustering In Practice` | Unsupervised learning and clustering |
| `Data Visualisation` | Data visualization principles and tools |
| `Deep Learning` | Neural networks and deep architectures |
| `Enjeux Climatiques` | Climate issues and data analysis |
| `Generative AI` | Generative models (LLMs, diffusion) |
| `Linear Models` | Linear modeling techniques |
| `Machine Learning` | Core machine learning algorithms |
| `Reinforcement Learning` | Reinforcement learning algorithms |
| `SQL` | Database and SQL queries |
| `Statistiques Non Paramétrique` | Non-parametric statistics |
| `Time Series` | Time series analysis and forecasting |
| `Unsupervised Learning` | Unsupervised learning methods |
| `VBA` | Visual Basic for Applications |
## 🛠️ Technologies & Tools
- [Python](https://www.python.org): A high-level, interpreted programming language, widely used for data science, machine learning, and scientific computing.
- [R](https://www.r-project.org): A statistical computing environment, perfect for data analysis and visualization.
- [Jupyter](https://jupyter.org): Interactive notebooks combining code, results, and rich text for reproducible research.
- [Pandas](https://pandas.pydata.org): A data manipulation library providing data structures and operations for manipulating numerical tables and time series.
- [NumPy](https://numpy.org): Core package for numerical computing with support for large, multi-dimensional arrays and matrices.
- [SciPy](https://www.scipy.org): A library for advanced scientific computations including optimization, integration, and signal processing.
- [Scikit-learn](https://scikit-learn.org): A robust library offering simple and efficient tools for machine learning and statistical modeling, including classification, regression, and clustering.
- [TensorFlow](https://www.tensorflow.org): A comprehensive open-source framework for building and deploying machine learning and deep learning models.
- [Keras](https://keras.io): A high-level neural networks API, running on top of TensorFlow, designed for fast experimentation.
- [Matplotlib](https://matplotlib.org): A versatile plotting library for creating high-quality static, animated, and interactive visualizations in Python.
- [Plotly](https://plotly.com): An interactive graphing library for creating dynamic visualizations in Python and R.
- [Seaborn](https://seaborn.pydata.org): A statistical data visualization library built on top of Matplotlib, providing a high-level interface for drawing attractive and informative graphics.
- [RMarkdown](https://rmarkdown.rstudio.com): A dynamic tool for combining code, results, and narrative into high-quality documents and presentations.
- [FactoMineR](https://factominer.free.fr/): An R package focused on multivariate exploratory data analysis (e.g., PCA, MCA, CA).
- [ggplot2](https://ggplot2.tidyverse.org): A grammar-based graphics package for creating complex and elegant visualizations in R.
- [RShiny](https://shiny.rstudio.com): A web application framework for building interactive web apps directly from R.
- [LangChain](https://langchain.com): A framework for developing applications powered by language models.
- and my 🧠.
### Python
- **Data Science**: `numpy`, `pandas`, `scipy`, `matplotlib`, `seaborn`, `plotly`, `geopandas`
- **Machine Learning**: `scikit-learn`, `xgboost`, `catboost`, `shap`, `umap-learn`, `imblearn`
- **Deep Learning**: `tensorflow`, `keras`, `torch`, `accelerate`
- **LLM/RAG**: `langchain`, `langchain-community`, `sentence-transformers`, `faiss-cpu`
- **Other**: `statsmodels`, `plotly`, `polars`, `requests`, `openpyxl`
### R
- **Core**: tidyverse, ggplot2, FactoMineR, caret, glmnet
- **Shiny**: RShiny for interactive web applications
- **Reporting**: RMarkdown for reproducible reports
### Tools
- **Jupyter** Interactive notebooks for reproducible research
- **RStudio** R development environment
- **uv** Fast Python package manager and virtual environment
- **ruff** Python linter and formatter
- **lintr** R linter
## 🚀 Getting Started
1. Clone the repository:
```bash
git clone <repository-url>
cd studies
```
2. Set up the Python environment:
```bash
uv sync
```
3. Run the linter:
```bash
ruff check .
```
4. Format code:
```bash
ruff format .
```
## 📝 Notes
- Some subprojects have isolated `pyproject.toml` files (e.g., `M2/Reinforcement Learning/project/`)
- Large datasets are not versioned—download via notebook code when needed
- Course materials and documentation are primarily in French