diff --git a/M2/Machine Learning/TP_2/2025_TP_2_M2_ISF.ipynb b/M2/Machine Learning/TP_2/2025_TP_2_M2_ISF.ipynb index 73aaa1c..7a7913a 100644 --- a/M2/Machine Learning/TP_2/2025_TP_2_M2_ISF.ipynb +++ b/M2/Machine Learning/TP_2/2025_TP_2_M2_ISF.ipynb @@ -44,7 +44,7 @@ { "cell_type": "code", "execution_count": null, - "id": "97d58527", + "id": "be5e7be4", "metadata": {}, "outputs": [], "source": [ @@ -52,13 +52,13 @@ "import pandas as pd\n", "import numpy as np\n", "\n", - "#Graphiques \n", + "# Graphiques\n", "import seaborn as sns\n", "sns.set()\n", "import plotly.express as px\n", "import plotly.graph_objects as gp\n", "\n", - "#Statistiques\n", + "# Statistiques\n", "from scipy.stats import chi2_contingency\n", "\n", "# Machine Learning\n", @@ -78,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "c9597b48", "metadata": {}, "outputs": [], @@ -140,8 +140,7 @@ "#Itinitialisation algo\n", "kmeans = KMeans(init=init_points.reshape(-1,1),\n", " n_clusters=#Complétez avec votre code,\n", - " n_init = 1) \n", - " " + " n_init = 1)" ] }, { @@ -155,7 +154,7 @@ "data_x = np.array(x)\n", "data_x = data_x.reshape(-1,1)\n", "\n", - "# Fitting \n", + "# Fitting\n", "kmeans.fit(data_x)" ] }, @@ -180,7 +179,7 @@ "metadata": {}, "outputs": [], "source": [ - "#Représentation Graphique \n", + "#Représentation Graphique\n", "plt.scatter(x, y, c=labels, cmap='viridis')\n", "plt.show()" ] @@ -242,7 +241,7 @@ "metadata": {}, "outputs": [], "source": [ - "#Complétez avec votre code " + "#Complétez avec votre code" ] }, { @@ -519,7 +518,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "studies", "language": "python", "name": "python3" }, @@ -533,7 +532,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.13.3" } }, "nbformat": 4,