mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-25 19:52:37 +01:00
Refactor code in numerical methods notebooks
- Updated import order in Point_Fixe.ipynb for consistency. - Changed lambda functions to regular function definitions for clarity in Point_Fixe.ipynb. - Added numpy import in TP1_EDO_EulerExp.ipynb, TP2_Lokta_Volterra.ipynb, and TP3_Convergence.ipynb for better readability. - Modified for loops in TP1_EDO_EulerExp.ipynb and TP2_Lokta_Volterra.ipynb to include strict=False for compatibility with future Python versions.
This commit is contained in:
@@ -259,7 +259,7 @@
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"# Import part of a library\n",
|
||||
"from scipy.stats import norm, multivariate_normal"
|
||||
"from scipy.stats import multivariate_normal, norm"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -32,8 +32,8 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"rng = np.random.default_rng(seed=42)\n",
|
||||
"size = 100\n",
|
||||
|
||||
@@ -124,7 +124,9 @@
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": "## 1. K-NN classification for `Iris` <a class=\"anchor\" id=\"chapter1\"></a>"
|
||||
"source": [
|
||||
"## 1. K-NN classification for `Iris` <a class=\"anchor\" id=\"chapter1\"></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {
|
||||
@@ -331,7 +333,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-02-07T16:32:18.698079Z",
|
||||
@@ -355,8 +357,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# np.argsort\n",
|
||||
"from collections import Counter\n",
|
||||
"\n",
|
||||
"# np.argsort\n",
|
||||
"distance_ex = np.array([4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 0.5, 0.2])\n",
|
||||
"print(\n",
|
||||
" \"The indices where the 4 smallest digits are located are \\n\",\n",
|
||||
@@ -367,9 +370,6 @@
|
||||
"print(\"\\n\")\n",
|
||||
"\n",
|
||||
"# counter.most_common()\n",
|
||||
"\n",
|
||||
"from collections import Counter\n",
|
||||
"\n",
|
||||
"print(\n",
|
||||
" \"In 'aabbbbccccccc', the frequencies of the letters are : \\n\",\n",
|
||||
" Counter(\"aabbbbccccccc\").most_common(),\n",
|
||||
@@ -1274,9 +1274,10 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from itertools import product\n",
|
||||
"\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"from itertools import product\n",
|
||||
"from sklearn.neighbors import KNeighborsClassifier"
|
||||
]
|
||||
},
|
||||
@@ -1411,7 +1412,7 @@
|
||||
"f, axarr = plt.subplots(2, 3, sharex=\"col\", sharey=\"row\", figsize=(15, 12))\n",
|
||||
"\n",
|
||||
"for idx, clf, tt in zip(\n",
|
||||
" product([0, 1, 2], [0, 1, 2]), KNNs, [f\"KNN (k={k})\" for k in nb_neighbors]\n",
|
||||
" product([0, 1, 2], [0, 1, 2]), KNNs, [f\"KNN (k={k})\" for k in nb_neighbors], strict=False\n",
|
||||
"):\n",
|
||||
" Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n",
|
||||
" Z = Z.reshape(xx.shape)\n",
|
||||
|
||||
@@ -34,8 +34,8 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.linear_model import LogisticRegression"
|
||||
]
|
||||
},
|
||||
@@ -41034,8 +41034,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn import datasets\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"iris = datasets.load_iris(as_frame=True)\n",
|
||||
"\n",
|
||||
|
||||
@@ -48,7 +48,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2025-03-26T10:34:01.222808Z",
|
||||
@@ -433,9 +433,9 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd # dataframes are in pandas\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"hitters = pd.read_csv(\"data/Hitters.csv\", index_col=\"Name\")\n",
|
||||
"\n",
|
||||
@@ -896,11 +896,11 @@
|
||||
"source": [
|
||||
"# Hint for Question (4) :\n",
|
||||
"ex = pd.DataFrame(\n",
|
||||
" dict(\n",
|
||||
" nom=[\"Alice\", \"Nicolas\", \"Jean\"],\n",
|
||||
" age=[19, np.NaN, np.NaN],\n",
|
||||
" exam=[15, 14, np.NaN],\n",
|
||||
" )\n",
|
||||
" {\n",
|
||||
" \"nom\": [\"Alice\", \"Nicolas\", \"Jean\"],\n",
|
||||
" \"age\": [19, np.NaN, np.NaN],\n",
|
||||
" \"exam\": [15, 14, np.NaN],\n",
|
||||
" }\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(\"data : \\n\", ex)\n",
|
||||
@@ -2545,7 +2545,7 @@
|
||||
"\n",
|
||||
"MSEs = []\n",
|
||||
"for name, estimator in zip(\n",
|
||||
" [\"LassoCV\", \"LassoBIC\", \"RidgeCV\", \"OLS\"], [lassoCV, lassoBIC, ridgeCV, linReg]\n",
|
||||
" [\"LassoCV\", \"LassoBIC\", \"RidgeCV\", \"OLS\"], [lassoCV, lassoBIC, ridgeCV, linReg], strict=False\n",
|
||||
"):\n",
|
||||
" y_pred = estimator.predict(Xtest)\n",
|
||||
" MSE = mean_squared_error(Ytest, y_pred)\n",
|
||||
|
||||
@@ -32,9 +32,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt"
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -84,8 +84,7 @@
|
||||
"type": "unknown"
|
||||
}
|
||||
],
|
||||
"conversionMethod": "pd.DataFrame",
|
||||
"ref": "37d5b76b-9fed-490f-9dd5-20a98409d9ca",
|
||||
"ref": "5aa01ea5-52e9-47bd-bf16-02eda59eafb2",
|
||||
"rows": [
|
||||
[
|
||||
"0",
|
||||
@@ -294,8 +293,7 @@
|
||||
"type": "unknown"
|
||||
}
|
||||
],
|
||||
"conversionMethod": "pd.DataFrame",
|
||||
"ref": "7dc949eb-d6ef-4d5f-969f-c852d588c859",
|
||||
"ref": "fdbea167-a638-4d3f-8877-210d50fec511",
|
||||
"rows": [
|
||||
[
|
||||
"0",
|
||||
@@ -491,8 +489,7 @@
|
||||
"type": "integer"
|
||||
}
|
||||
],
|
||||
"conversionMethod": "pd.DataFrame",
|
||||
"ref": "6f54a3b7-bd30-4a68-b39b-4220633acbfc",
|
||||
"ref": "5b56b570-be86-4796-82f4-bd777c0f3302",
|
||||
"rows": [
|
||||
[
|
||||
"0",
|
||||
@@ -728,8 +725,7 @@
|
||||
"type": "integer"
|
||||
}
|
||||
],
|
||||
"conversionMethod": "pd.DataFrame",
|
||||
"ref": "dc527433-ad4a-4862-bddf-ed1bfa01897a",
|
||||
"ref": "af40f60c-6cb1-4d32-bdfe-3ea091985909",
|
||||
"rows": [
|
||||
[
|
||||
"0",
|
||||
@@ -930,8 +926,7 @@
|
||||
"type": "integer"
|
||||
}
|
||||
],
|
||||
"conversionMethod": "pd.DataFrame",
|
||||
"ref": "01a11b3a-e783-4b35-8867-c7a57df85078",
|
||||
"ref": "74c5f61c-9b82-4dc6-991b-6a173848eccb",
|
||||
"rows": [
|
||||
[
|
||||
"2",
|
||||
@@ -1205,7 +1200,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1245,7 +1240,7 @@
|
||||
"\n",
|
||||
"print(\n",
|
||||
" \"The vocabulary arranged in alphabetical order : \",\n",
|
||||
" sorted(list(vec.vocabulary_.keys())),\n",
|
||||
" sorted(vec.vocabulary_.keys()),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# 2. Displaying the vectors :\n",
|
||||
@@ -1341,7 +1336,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -2190,7 +2185,7 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"display_name": "studies",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -2204,7 +2199,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.9"
|
||||
"version": "3.13.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -80,7 +80,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"id": "5260add2-2092-4849-b39b-0b4416d60275",
|
||||
"metadata": {
|
||||
"colab": {
|
||||
@@ -91,8 +91,8 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"import numpy as np\n",
|
||||
"import tensorflow as tf\n",
|
||||
"\n",
|
||||
"tf.keras.utils.set_random_seed(42)\n",
|
||||
"fashion_mnist = tf.keras.datasets.fashion_mnist\n",
|
||||
@@ -2244,7 +2244,7 @@
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"display_name": "studies",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -2258,7 +2258,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.9"
|
||||
"version": "3.13.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -26,7 +26,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 154,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -41,9 +41,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"np.random.seed(12)\n",
|
||||
"num_observations = 400\n",
|
||||
@@ -1554,7 +1553,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 172,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -1574,7 +1573,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.metrics import confusion_matrix, accuracy_score\n",
|
||||
"from sklearn.metrics import accuracy_score, confusion_matrix\n",
|
||||
"\n",
|
||||
"print(accuracy_score(cluster_to_label, labels))\n",
|
||||
"print(confusion_matrix(cluster_to_label, labels))"
|
||||
|
||||
Reference in New Issue
Block a user