mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-14 15:54:13 +01:00
Ajoute une section "Deep Learning" au README et met à jour les dépendances pour inclure Keras
This commit is contained in:
@@ -15,7 +15,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 1,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@@ -24,7 +24,9 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"%matplotlib inline\n",
|
"%matplotlib inline\n",
|
||||||
"import matplotlib.pyplot as plt\n",
|
"import matplotlib.pyplot as plt\n",
|
||||||
"import seaborn as sns; sns.set(style='whitegrid')\n",
|
"import seaborn as sns\n",
|
||||||
|
"\n",
|
||||||
|
"sns.set(style='whitegrid')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"import tensorflow as tf\n",
|
"import tensorflow as tf\n",
|
||||||
"from tensorflow import keras\n",
|
"from tensorflow import keras\n",
|
||||||
@@ -247,7 +249,7 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3",
|
"display_name": "studies",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python3"
|
||||||
},
|
},
|
||||||
@@ -261,7 +263,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.9.6"
|
"version": "3.13.3"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|||||||
@@ -30,6 +30,7 @@ The projects are organized into two main sections:
|
|||||||
|
|
||||||
- `M2`
|
- `M2`
|
||||||
- `Data Visualisation`
|
- `Data Visualisation`
|
||||||
|
- `Deep Learning`
|
||||||
- `Linear Models`
|
- `Linear Models`
|
||||||
- `Machine Learning`
|
- `Machine Learning`
|
||||||
- `Risks Management`
|
- `Risks Management`
|
||||||
@@ -45,6 +46,7 @@ The projects are organized into two main sections:
|
|||||||
- [SciPy](https://www.scipy.org): A library for advanced scientific computations including optimization, integration, and signal processing.
|
- [SciPy](https://www.scipy.org): A library for advanced scientific computations including optimization, integration, and signal processing.
|
||||||
- [Scikit-learn](https://scikit-learn.org): A robust library offering simple and efficient tools for machine learning and statistical modeling, including classification, regression, and clustering.
|
- [Scikit-learn](https://scikit-learn.org): A robust library offering simple and efficient tools for machine learning and statistical modeling, including classification, regression, and clustering.
|
||||||
- [TensorFlow](https://www.tensorflow.org): A comprehensive open-source framework for building and deploying machine learning and deep learning models.
|
- [TensorFlow](https://www.tensorflow.org): A comprehensive open-source framework for building and deploying machine learning and deep learning models.
|
||||||
|
- [Keras](https://keras.io): A high-level neural networks API, running on top of TensorFlow, designed for fast experimentation.
|
||||||
- [Matplotlib](https://matplotlib.org): A versatile plotting library for creating high-quality static, animated, and interactive visualizations in Python.
|
- [Matplotlib](https://matplotlib.org): A versatile plotting library for creating high-quality static, animated, and interactive visualizations in Python.
|
||||||
- [Plotly](https://plotly.com): An interactive graphing library for creating dynamic visualizations in Python and R.
|
- [Plotly](https://plotly.com): An interactive graphing library for creating dynamic visualizations in Python and R.
|
||||||
- [Seaborn](https://seaborn.pydata.org): A statistical data visualization library built on top of Matplotlib, providing a high-level interface for drawing attractive and informative graphics.
|
- [Seaborn](https://seaborn.pydata.org): A statistical data visualization library built on top of Matplotlib, providing a high-level interface for drawing attractive and informative graphics.
|
||||||
|
|||||||
Reference in New Issue
Block a user