diff --git a/M2/Deep Learning/TP1 - Starter.ipynb b/M2/Deep Learning/TP1 - Starter.ipynb index 6fb95bb..dd3ec74 100644 --- a/M2/Deep Learning/TP1 - Starter.ipynb +++ b/M2/Deep Learning/TP1 - Starter.ipynb @@ -487,27 +487,23 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 59, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 421us/step\n", - "[5.7584018e-04 4.8742178e-05 9.9363518e-01 4.3561440e-03 2.4410772e-06\n", - " 9.6543576e-05 7.6319941e-04 1.7040280e-04 3.4009825e-04 1.1379666e-05]\n", - "2\n", - "2\n" + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 712us/step\n", + "[9.3210938e-06 9.0745144e-04 9.9405009e-01 1.4055278e-03 5.0518427e-08\n", + " 8.1401318e-05 3.4974131e-03 2.3491805e-07 4.7366044e-05 1.1456490e-06]\n" ] } ], "source": [ "predictions = model.predict(X_test)\n", "\n", - "print(predictions[1])\n", - "print(np.argmax(predictions[1]))\n", - "print(y_test[1])" + "print(predictions[1])" ] }, { @@ -519,19 +515,23 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1.0000001 1. 1. ... 1.0000001 0.9999999 0.9999999]\n" + "1.0\n", + "2\n", + "2\n" ] } ], "source": [ - "print(np.sum(predictions, axis=1))" + "print(np.sum(predictions[1]))\n", + "print(np.argmax(predictions[1]))\n", + "print(y_test[1])" ] }, {