From 5cd61735550a7091c6c7bc23aaac592b8098b432 Mon Sep 17 00:00:00 2001 From: Arthur DANJOU Date: Wed, 29 Jan 2025 11:56:19 +0100 Subject: [PATCH] Add GLM Project --- .../Projet/GLM Code - DANJOU & DUROUSSEAU.rmd | 512 +++ M1/General Linear Models/Projet/GLM Code.html | 2806 +++++++++++++++++ M1/General Linear Models/Projet/projet.csv | 1818 +++++++++++ 3 files changed, 5136 insertions(+) create mode 100644 M1/General Linear Models/Projet/GLM Code - DANJOU & DUROUSSEAU.rmd create mode 100644 M1/General Linear Models/Projet/GLM Code.html create mode 100644 M1/General Linear Models/Projet/projet.csv diff --git a/M1/General Linear Models/Projet/GLM Code - DANJOU & DUROUSSEAU.rmd b/M1/General Linear Models/Projet/GLM Code - DANJOU & DUROUSSEAU.rmd new file mode 100644 index 0000000..9e18d97 --- /dev/null +++ b/M1/General Linear Models/Projet/GLM Code - DANJOU & DUROUSSEAU.rmd @@ -0,0 +1,512 @@ +--- +title: "Generalized Linear Models - Project by Arthur DANJOU" +always_allow_html: true +output: +html_document: +toc: true +toc_depth: 4 +fig_caption: true +--- + +## Data Analysis + +```{r} +setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/Projet') +``` + +```{r} +library(MASS) +library(AER) +library(rmarkdown) +library(car) +library(corrplot) +library(carData) +library(ggfortify) +library(ggplot2) +library(gridExtra) +library(caret) +``` + +### Data Preprocessing +```{r} +data <- read.csv("./projet.csv", header = TRUE, sep = ",", dec = ".") + +# Factors +data$saison <- as.factor(data$saison) +data$mois <- as.factor(data$mois) +data$jour_mois <- as.factor(data$jour_mois) +data$jour_semaine <- as.factor(data$jour_semaine) +data$horaire <- as.factor(data$horaire) +data$jour_travail <- as.factor(data$jour_travail) +data$vacances <- as.factor(data$vacances) +data$meteo <- as.factor(data$meteo) + +# Quantitative variables +data$humidite_sqrt <- sqrt(data$humidite) +data$humidite_square <- data$humidite^2 + +data$temperature1_square <- data$temperature1^2 +data$temperature2_square <- data$temperature2^2 + +data$vent_square <- data$vent^2 +data$vent_sqrt <- sqrt(data$vent) + +# Remove obs column +rownames(data) <- data$obs +data <- data[, -1] +paged_table(data) +``` + +```{r} +colSums(is.na(data)) +sum(duplicated(data)) +``` + +```{r} +str(data) +summary(data) +``` + +### Study of the Quantitative Variables + +#### Distribution of Variables + +```{r} +plot_velos <- ggplot(data, aes(x = velos)) + + geom_histogram(bins = 25, fill = "blue") + + labs(title = "Distribution du nombre de vélos loués", x = "Nombre de locations de vélos") + +plot_temperature1 <- ggplot(data, aes(x = temperature1)) + + geom_histogram(bins = 30, fill = "green") + + labs(title = "Distribution de la température1", x = "Température moyenne mesuré (°C)") + +plot_temperature2 <- ggplot(data, aes(x = temperature2)) + + geom_histogram(bins = 30, fill = "green") + + labs(title = "Distribution de la température2", x = "Température moyenne ressentie (°C)") + +plot_humidite <- ggplot(data, aes(x = humidite)) + + geom_histogram(bins = 30, fill = "green") + + labs(title = "Distribution de la humidité", x = "Pourcentage d'humidité") + +plot_vent <- ggplot(data, aes(x = vent)) + + geom_histogram(bins = 30, fill = "green") + + labs(title = "Distribution de la vent", x = "Vitesse du vent (Km/h)") + +grid.arrange(plot_velos, plot_temperature1, plot_temperature2, plot_humidite, plot_vent, ncol = 3) +``` + +#### Correlation between Quantitatives Variables + +```{r} +#detach(package:arm) # If error, uncomment this line due to duplicate function 'corrplot' +corr_matrix <- cor(data[, sapply(data, is.numeric)]) +corrplot(corr_matrix, type = "lower", tl.col = "black", tl.srt = 45) +pairs(data[, sapply(data, is.numeric)]) +cor.test(data$temperature1, data$temperature2) +``` + +### Study of the Qualitative Variables + +```{r} +plot_saison <- ggplot(data, aes(x = saison, y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Nombre de vélos par saison", x = "Saison", y = "Nombre de vélos loués") + +plot_jour_semaine <- ggplot(data, aes(x = jour_semaine, y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Nombre de vélos par jour de la semaine", x = "Jour de la semaine", y = "Nombre de vélos loués") + +plot_mois <- ggplot(data, aes(x = mois, y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Nombre de vélos par mois de l'année", x = "Mois de l'année", y = "Nombre de vélos loués") + +plot_jour_mois <- ggplot(data, aes(x = jour_mois, y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Nombre de vélos par jour du mois", x = "Jour du mois", y = "Nombre de vélos loués") + +plot_horaire <- ggplot(data, aes(x = horaire, y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Nombre de vélos par horaire de la journée", x = "Horaire de la journée", y = "Nombre de vélos loués") + +plot_jour_travail <- ggplot(data, aes(x = jour_travail, y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Nombre de vélos par jour travaillé", x = "Jour travaillé", y = "Nombre de vélos loués") + +plot_vacances <- ggplot(data, aes(x = vacances, y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Nombre de vélos par vacances", x = "Vacances", y = "Nombre de vélos loués") + +plot_meteo <- ggplot(data, aes(x = meteo, y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Nombre de vélos par météo", x = "Météo", y = "Nombre de vélos loués") + +grid.arrange(plot_horaire, plot_jour_semaine, plot_jour_mois, plot_mois, plot_saison, plot_jour_travail, plot_vacances, plot_meteo, ncol = 3) +``` + +```{r} +chisq.test(data$mois, data$saison) +chisq.test(data$meteo, data$saison) +chisq.test(data$meteo, data$mois) +``` + +### Outliers Detection + +```{r} +boxplot_velos <- ggplot(data, aes(x = "", y = velos)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de vélos", y = "Nombre de vélos") + +boxplot_temperature1 <- ggplot(data, aes(x = "", y = temperature1)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de température1", y = "Température moyenne mesuré (°C)") + +boxplot_temperature1_sq <- ggplot(data, aes(x = "", y = temperature1_square)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de température1^2", y = "Température moyenne mesuré (°C^2)") + +boxplot_temperature2 <- ggplot(data, aes(x = "", y = temperature2)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de température2", y = "Température moyenne ressentie (°C)") + +boxplot_temperature2_sq <- ggplot(data, aes(x = "", y = temperature2_square)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de température2^2", y = "Température moyenne ressentie (°C^2)") + +boxplot_humidite <- ggplot(data, aes(x = "", y = humidite)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de humidité", y = "Pourcentage d'humidité") + +boxplot_humidite_sqrt <- ggplot(data, aes(x = "", y = humidite_sqrt)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de sqrt(humidité)", y = "Pourcentage d'humidité (sqrt(%))") + +boxplot_humidite_square <- ggplot(data, aes(x = "", y = humidite_square)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de humidité^2", y = "Pourcentage d'humidité (%^2)") + +boxplot_vent <- ggplot(data, aes(x = "", y = vent)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de vent", y = "Vitesse du vent (Km/h)") + +boxplot_vent_sqrt <- ggplot(data, aes(x = "", y = vent_sqrt)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de sqrt(vent)", y = "Vitesse du vent sqrt(Km/h)") + +boxplot_vent_square <- ggplot(data, aes(x = "", y = vent_square)) + + geom_boxplot(fill = "lightblue") + + labs(title = "Boxplot de vent^2", y = "Vitesse du vent (Km/h)^2") + +grid.arrange(boxplot_velos, boxplot_temperature1, boxplot_temperature1_sq, boxplot_temperature2, boxplot_temperature2_sq, boxplot_humidite, boxplot_humidite_sqrt, boxplot_humidite_square, boxplot_vent, boxplot_vent_sqrt, boxplot_vent_square, ncol = 4) +``` + +```{r} +length_data <- nrow(data) +numeric_vars <- sapply(data, is.numeric) +total_outliers <- 0 + +for (var in names(data)[numeric_vars]) { + data_outlier <- data[[var]] + Q1 <- quantile(data_outlier, 0.25) + Q3 <- quantile(data_outlier, 0.75) + IQR <- Q3 - Q1 + + lower_limit <- Q1 - 1.5 * IQR + upper_limit <- Q3 + 1.5 * IQR + + outliers <- data[data_outlier < lower_limit | data_outlier > upper_limit,] + cat("Number of outliers for the variable", var, ":", nrow(outliers), "\n") + data <- data[data_outlier >= lower_limit & data_outlier <= upper_limit,] +} + +cat("Number of outliers removed :", length_data - nrow(data), "\n") +cat("Data length after removing outliers :", nrow(data), "\n") +``` + +## Model Creation and Comparison + +### Data Split + +```{r} +set.seed(123) +data_split <- rsample::initial_split(data, prop = 0.8) +data_train <- rsample::training(data_split) +data_test <- rsample::testing(data_split) +``` + +### Choice of the Distribution *vélos* + +```{r} +model_poisson <- glm(velos ~ ., family = poisson, data = data_train) +model_nb <- glm.nb(velos ~ ., data = data_train) +model_gaussian <- glm(velos ~ ., family = gaussian, data = data_train) +t(AIC(model_poisson, model_nb, model_gaussian)[2]) + +dispersiontest(model_poisson) + +mean_velos <- mean(data_train$velos) +var_velos <- var(data_train$velos) +cat("Mean :", mean_velos, "Variance :", var_velos, "\n") +``` + +### Model Selection + +```{r} +model_full_quantitative <- glm.nb( + velos ~ vent + + vent_square + + vent_sqrt + + + humidite + + humidite_square + + humidite_sqrt + + + temperature1_square + + temperature1 + + + temperature2 + + temperature2_square + , data = data_train) +summary(model_full_quantitative) +``` + +```{r} +anova(model_full_quantitative) +``` + +```{r} +model_quantitative_quali <- glm.nb( + velos ~ + vent + + vent_square + + vent_sqrt + + humidite + + humidite_square + + humidite_sqrt + + temperature1 + + temperature1_square + + + horaire + + saison + + meteo + + mois + + vacances + + jour_travail + + jour_semaine + + jour_mois + , data = data_train) +summary(model_quantitative_quali) +``` + +```{r} +anova(model_quantitative_quali) +``` + +```{r} +model_quanti_quali_final <- glm.nb( + velos ~ + vent + + vent_square + # + humidite + + humidite_square + + humidite_sqrt + # + temperature1 + + temperature1_square + + + horaire + + saison + + meteo + + mois + + vacances + , data = data_train) +summary(model_quanti_quali_final) +``` + +```{r} +model_0 <- glm.nb(velos ~ 1, data = data_train) +model_forward <- stepAIC( + model_0, + vélos ~ vent + + humidite + + humidite_square + + temperature1 + + temperature1_square + + + horaire + + saison + + meteo + + mois + + vacances, + data = data_train, + trace = FALSE, + direction = "forward" +) +model_backward <- stepAIC( + model_quanti_quali_final, + ~1, + trace = FALSE, + direction = "backward" +) +model_both <- stepAIC( + model_0, + vélos ~ vent + + humidite + + humidite_square + + temperature1 + + temperature1_square + + + horaire + + saison + + meteo + + mois + + vacances, + data = data_train, + trace = FALSE, + direction = "both" +) +AIC(model_forward, model_both, model_backward) +summary(model_forward) +``` + +```{r} +model_final_without_interaction <- glm.nb( + velos ~ horaire + + mois + + meteo + + temperature1 + + saison + + temperature1_square + + humidite_square + + vacances + + humidite + + vent + , data = data_train) +summary(model_final_without_interaction) +``` + +### Final Model + +#### Choice and Validation of the Model + +```{r} +model_final <- glm.nb( + velos ~ horaire + + mois + + meteo + + temperature1 + + saison + + temperature1_square + + humidite_square + + vacances + + humidite + + vent + + + horaire:temperature1 + + temperature1_square:mois + , data = data_train +) +summary(model_final) +``` + +```{r} +anova(model_final, test = "Chisq") +``` + +```{r} +lrtest(model_final, model_final_without_interaction) +``` + +```{r} +dispersion_ratio <- sum(residuals(model_final, type = "pearson")^2) / df.residual(model_final) +print(paste("Dispersion Ratio:", round(dispersion_ratio, 2))) + +hist(residuals(model_final, type = "deviance"), breaks = 30, freq = FALSE, col = "lightblue", main = "Histogram of Deviance Residuals") +x <- seq(-5, 5, length = 100) +curve(dnorm(x), col = "darkblue", lwd = 2, add = TRUE) + +autoplot(model_final, 1:4) +``` + +```{r} +library(arm) +binnedplot(fitted(model_final), residuals(model_final, type = "deviance"), col.int = "blue", col.pts = 2) +``` + +## Performance and Limitations of the Final Model + +### Predictions and *Mean Square Error* + +```{r} +data_test$predictions <- predict(model_final, newdata = data_test, type = "response") +data_train$predictions <- predict(model_final, newdata = data_train, type = "response") + +predictions_ci <- predict( + model_final, + newdata = data_test, + type = "link", + se.fit = TRUE +) + +data_test$lwr <- exp(predictions_ci$fit - 1.96 * predictions_ci$se.fit) +data_test$upr <- exp(predictions_ci$fit + 1.96 * predictions_ci$se.fit) + +MSE <- mean((data_test$velos - data_test$predictions)^2) +cat("MSE :", MSE, "\n") +cat("RMSE train :", sqrt(mean((data_train$velos - data_train$predictions)^2)), "\n") +cat('RMSE :', sqrt(MSE), '\n') +``` + +### Evaluation of Model Performance + +```{r} +bounds <- c(200, 650) + +cat("Observations vs Prédictions\n") +cat(nrow(data_test[data_test$velos < bounds[1],]), "vs", sum(data_test$predictions < bounds[1]), "\n") +cat(nrow(data_test[data_test$velos > bounds[1] & data_test$velos < bounds[2],]), "vs", sum(data_test$predictions > bounds[1] & data_test$predictions < bounds[2]), "\n") +cat(nrow(data_test[data_test$velos > bounds[2],]), "vs", sum(data_test$predictions > bounds[2]), "\n") +cat('\n') + +categories <- c(0, bounds, Inf) +categories_label <- c("Low", "Mid", "High") + +data_test$velos_cat <- cut(data_test$velos, + breaks = categories, + labels = categories_label, + include.lowest = TRUE) +data_test$predictions_cat <- cut(data_test$predictions, + breaks = categories, + labels = categories_label, + include.lowest = TRUE) +conf_matrix <- confusionMatrix(data_test$velos_cat, data_test$predictions_cat) +conf_matrix +``` + +```{r} +ggplot(data_test, aes(x = velos, y = predictions)) + + geom_point(color = "blue", alpha = 0.6, size = 2) + + geom_abline(slope = 1, intercept = 0, color = "red", linetype = "dashed") + + geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.2, fill = "grey") + + labs( + title = "Comparison of Observed and Predicted Bikes", + x = "Number of Observed Bikes", + y = "Number of Predicted Bikes" + ) + + theme_minimal() + +ggplot(data_test, aes(x = velos_cat, fill = predictions_cat)) + + geom_bar(position = "dodge") + + labs(title = "Predictions vs Observations (by categories)", + x = "Observed categories", y = "Number of predictions") + +df_plot <- data.frame(observed = data_test$velos, predicted = data_test$predictions) + +# Créer l'histogramme avec la courbe de densité +ggplot(df_plot, aes(x = observed)) + + geom_histogram(aes(y = ..density..), binwidth = 50, fill = "lightblue", color = "black", alpha = 0.7) + # Histogramme des données observées + geom_density(aes(x = predicted), color = "red", size = 1) + # Courbe de densité des valeurs prédites + labs(title = "Observed distribution vs. Predicted distribution", + x = "Number of vélos", + y = "Density") + + theme_bw() + +``` diff --git a/M1/General Linear Models/Projet/GLM Code.html b/M1/General Linear Models/Projet/GLM Code.html new file mode 100644 index 0000000..218c6a8 --- /dev/null +++ b/M1/General Linear Models/Projet/GLM Code.html @@ -0,0 +1,2806 @@ + + + + + + + + + + + + + +Generalized Linear Models - Project by Arthur DANJOU and Antonin DUROUSSEAU + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+

Data Analysis

+
setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/Projet')
+
library(MASS)
+library(AER)
+
## Loading required package: car
+
## Loading required package: carData
+
## Loading required package: lmtest
+
## Loading required package: zoo
+
## 
+## Attaching package: 'zoo'
+
## The following objects are masked from 'package:base':
+## 
+##     as.Date, as.Date.numeric
+
## Loading required package: sandwich
+
## Loading required package: survival
+
library(rmarkdown)
+library(car)
+library(corrplot)
+
## corrplot 0.95 loaded
+
library(carData)
+library(ggfortify)
+
## Loading required package: ggplot2
+
library(ggplot2)
+library(gridExtra)
+library(caret)
+
## Loading required package: lattice
+
## 
+## Attaching package: 'caret'
+
## The following object is masked from 'package:survival':
+## 
+##     cluster
+
+

Data Preprocessing

+
data <- read.csv("./projet.csv", header = TRUE, sep = ",", dec = ".")
+
+# Factors
+data$saison <- as.factor(data$saison)
+data$mois <- as.factor(data$mois)
+data$jour_mois <- as.factor(data$jour_mois)
+data$jour_semaine <- as.factor(data$jour_semaine)
+data$horaire <- as.factor(data$horaire)
+data$jour_travail <- as.factor(data$jour_travail)
+data$vacances <- as.factor(data$vacances)
+data$meteo <- as.factor(data$meteo)
+
+# Quantitative variables
+data$humidite_sqrt <- sqrt(data$humidite)
+data$humidite_square <- data$humidite^2
+
+data$temperature1_square <- data$temperature1^2
+data$temperature2_square <- data$temperature2^2
+
+data$vent_square <- data$vent^2
+data$vent_sqrt <- sqrt(data$vent)
+
+# Remove obs column
+rownames(data) <- data$obs
+data <- data[, -1]
+paged_table(data)
+
+ +
+
colSums(is.na(data))
+
##              saison                mois           jour_mois        jour_semaine 
+##                   0                   0                   0                   0 
+##             horaire        jour_travail            vacances               meteo 
+##                   0                   0                   0                   0 
+##               velos            humidite                vent        temperature1 
+##                   0                   0                   0                   0 
+##        temperature2       humidite_sqrt     humidite_square temperature1_square 
+##                   0                   0                   0                   0 
+## temperature2_square         vent_square           vent_sqrt 
+##                   0                   0                   0
+
sum(duplicated(data))
+
## [1] 0
+
str(data)
+
## 'data.frame':    1817 obs. of  19 variables:
+##  $ saison             : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
+##  $ mois               : Factor w/ 12 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
+##  $ jour_mois          : Factor w/ 31 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...
+##  $ jour_semaine       : Factor w/ 7 levels "1","2","3","4",..: 7 7 7 7 7 1 1 1 1 1 ...
+##  $ horaire            : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
+##  $ jour_travail       : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
+##  $ vacances           : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
+##  $ meteo              : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 2 3 1 ...
+##  $ velos              : int  105 61 340 305 174 54 82 297 268 100 ...
+##  $ humidite           : num  78 78.2 75.5 82.2 88.8 ...
+##  $ vent               : num  1.38 6.84 30.98 30.58 26.39 ...
+##  $ temperature1       : num  2.88 5.39 11.98 12.21 11.55 ...
+##  $ temperature2       : num  2.29 5.25 11.5 12.5 11.8 ...
+##  $ humidite_sqrt      : num  8.83 8.85 8.69 9.07 9.42 ...
+##  $ humidite_square    : num  6084 6123 5700 6765 7885 ...
+##  $ temperature1_square: num  8.29 29.05 143.52 149.08 133.4 ...
+##  $ temperature2_square: num  5.24 27.56 132.25 156.25 139.24 ...
+##  $ vent_square        : num  1.9 46.8 959.8 935.1 696.4 ...
+##  $ vent_sqrt          : num  1.17 2.62 5.57 5.53 5.14 ...
+
summary(data)
+
##  saison       mois       jour_mois    jour_semaine horaire jour_travail
+##  1:444   3      :155   1      :  60   1:259        1:362   1: 573      
+##  2:460   5      :155   2      :  60   2:260        2:363   2:1244      
+##  3:468   7      :155   3      :  60   3:258        3:364               
+##  4:445   10     :155   4      :  60   4:259        4:365               
+##          12     :155   5      :  60   5:257        5:363               
+##          8      :153   6      :  60   6:260                            
+##          (Other):889   (Other):1457   7:264                            
+##  vacances meteo        velos           humidite           vent      
+##  1:1767   1:1192   Min.   :   7.0   Min.   :  0.00   Min.   : 0.00  
+##  2:  50   2: 464   1st Qu.: 275.0   1st Qu.: 48.40   1st Qu.:12.47  
+##           3: 161   Median : 619.0   Median : 62.75   Median :20.00  
+##                    Mean   : 684.2   Mean   : 62.94   Mean   :21.23  
+##                    3rd Qu.:1041.0   3rd Qu.: 78.00   3rd Qu.:28.28  
+##                    Max.   :2036.0   Max.   :100.00   Max.   :68.66  
+##                                                                     
+##   temperature1    temperature2    humidite_sqrt    humidite_square
+##  Min.   :-6.59   Min.   :-14.50   Min.   : 0.000   Min.   :    0  
+##  1st Qu.: 7.51   1st Qu.:  5.25   1st Qu.: 6.957   1st Qu.: 2343  
+##  Median :15.31   Median : 15.80   Median : 7.921   Median : 3938  
+##  Mean   :15.24   Mean   : 15.25   Mean   : 7.828   Mean   : 4323  
+##  3rd Qu.:23.15   3rd Qu.: 25.00   3rd Qu.: 8.832   3rd Qu.: 6084  
+##  Max.   :36.65   Max.   : 47.25   Max.   :10.000   Max.   :10000  
+##                                                                   
+##  temperature1_square temperature2_square  vent_square       vent_sqrt    
+##  Min.   :   0.0001   Min.   :   0.00     Min.   :   0.0   Min.   :0.000  
+##  1st Qu.:  56.4001   1st Qu.:  39.06     1st Qu.: 155.5   1st Qu.:3.531  
+##  Median : 234.3961   Median : 249.64     Median : 400.0   Median :4.472  
+##  Mean   : 319.6898   Mean   : 369.70     Mean   : 585.5   Mean   :4.400  
+##  3rd Qu.: 535.9225   3rd Qu.: 625.00     3rd Qu.: 799.8   3rd Qu.:5.318  
+##  Max.   :1343.2225   Max.   :2232.56     Max.   :4714.2   Max.   :8.286  
+## 
+
+
+

Study of the Quantitative Variables

+
+

Distribution of Variables

+
plot_velos <- ggplot(data, aes(x = velos)) +
+  geom_histogram(bins = 25, fill = "blue") +
+  labs(title = "Distribution du nombre de vélos loués", x = "Nombre de locations de vélos")
+
+plot_temperature1 <- ggplot(data, aes(x = temperature1)) +
+  geom_histogram(bins = 30, fill = "green") +
+  labs(title = "Distribution de la température1", x = "Température moyenne mesuré (°C)")
+
+plot_temperature2 <- ggplot(data, aes(x = temperature2)) +
+  geom_histogram(bins = 30, fill = "green") +
+  labs(title = "Distribution de la température2", x = "Température moyenne ressentie (°C)")
+
+plot_humidite <- ggplot(data, aes(x = humidite)) +
+  geom_histogram(bins = 30, fill = "green") +
+  labs(title = "Distribution de la humidité", x = "Pourcentage d'humidité")
+
+plot_vent <- ggplot(data, aes(x = vent)) +
+  geom_histogram(bins = 30, fill = "green") +
+  labs(title = "Distribution de la vent", x = "Vitesse du vent (Km/h)")
+
+grid.arrange(plot_velos, plot_temperature1, plot_temperature2, plot_humidite, plot_vent, ncol = 3)
+

+
+
+

Correlation between Quantitatives Variables

+
#detach(package:arm) # If error, uncomment this line due to duplicate function 'corrplot'
+corr_matrix <- cor(data[, sapply(data, is.numeric)])
+corrplot(corr_matrix, type = "lower", tl.col = "black", tl.srt = 45)
+

+
pairs(data[, sapply(data, is.numeric)])
+

+
cor.test(data$temperature1, data$temperature2)
+
## 
+##  Pearson's product-moment correlation
+## 
+## data:  data$temperature1 and data$temperature2
+## t = 384.61, df = 1815, p-value < 2.2e-16
+## alternative hypothesis: true correlation is not equal to 0
+## 95 percent confidence interval:
+##  0.9933370 0.9944541
+## sample estimates:
+##      cor 
+## 0.993921
+
+
+
+

Study of the Qualitative Variables

+
plot_saison <- ggplot(data, aes(x = saison, y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Nombre de vélos par saison", x = "Saison", y = "Nombre de vélos loués")
+
+plot_jour_semaine <- ggplot(data, aes(x = jour_semaine, y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Nombre de vélos par jour de la semaine", x = "Jour de la semaine", y = "Nombre de vélos loués")
+
+plot_mois <- ggplot(data, aes(x = mois, y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Nombre de vélos par mois de l'année", x = "Mois de l'année", y = "Nombre de vélos loués")
+
+plot_jour_mois <- ggplot(data, aes(x = jour_mois, y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Nombre de vélos par jour du mois", x = "Jour du mois", y = "Nombre de vélos loués")
+
+plot_horaire <- ggplot(data, aes(x = horaire, y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Nombre de vélos par horaire de la journée", x = "Horaire de la journée", y = "Nombre de vélos loués")
+
+plot_jour_travail <- ggplot(data, aes(x = jour_travail, y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Nombre de vélos par jour travaillé", x = "Jour travaillé", y = "Nombre de vélos loués")
+
+plot_vacances <- ggplot(data, aes(x = vacances, y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Nombre de vélos par vacances", x = "Vacances", y = "Nombre de vélos loués")
+
+plot_meteo <- ggplot(data, aes(x = meteo, y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Nombre de vélos par météo", x = "Météo", y = "Nombre de vélos loués")
+
+grid.arrange(plot_horaire, plot_jour_semaine, plot_jour_mois, plot_mois, plot_saison, plot_jour_travail, plot_vacances, plot_meteo, ncol = 3)
+

+
chisq.test(data$mois, data$saison)
+
## 
+##  Pearson's Chi-squared test
+## 
+## data:  data$mois and data$saison
+## X-squared = 4380.8, df = 33, p-value < 2.2e-16
+
chisq.test(data$meteo, data$saison)
+
## 
+##  Pearson's Chi-squared test
+## 
+## data:  data$meteo and data$saison
+## X-squared = 20.78, df = 6, p-value = 0.002009
+
chisq.test(data$meteo, data$mois)
+
## 
+##  Pearson's Chi-squared test
+## 
+## data:  data$meteo and data$mois
+## X-squared = 91.211, df = 22, p-value = 2.13e-10
+
+
+

Outliers Detection

+
boxplot_velos <- ggplot(data, aes(x = "", y = velos)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de vélos", y = "Nombre de vélos")
+
+boxplot_temperature1 <- ggplot(data, aes(x = "", y = temperature1)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de température1", y = "Température moyenne mesuré (°C)")
+
+boxplot_temperature1_sq <- ggplot(data, aes(x = "", y = temperature1_square)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de température1^2", y = "Température moyenne mesuré (°C^2)")
+
+boxplot_temperature2 <- ggplot(data, aes(x = "", y = temperature2)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de température2", y = "Température moyenne ressentie (°C)")
+
+boxplot_temperature2_sq <- ggplot(data, aes(x = "", y = temperature2_square)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de température2^2", y = "Température moyenne ressentie (°C^2)")
+
+boxplot_humidite <- ggplot(data, aes(x = "", y = humidite)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de humidité", y = "Pourcentage d'humidité")
+
+boxplot_humidite_sqrt <- ggplot(data, aes(x = "", y = humidite_sqrt)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de sqrt(humidité)", y = "Pourcentage d'humidité (sqrt(%))")
+
+boxplot_humidite_square <- ggplot(data, aes(x = "", y = humidite_square)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de humidité^2", y = "Pourcentage d'humidité (%^2)")
+
+boxplot_vent <- ggplot(data, aes(x = "", y = vent)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de vent", y = "Vitesse du vent (Km/h)")
+
+boxplot_vent_sqrt <- ggplot(data, aes(x = "", y = vent_sqrt)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de sqrt(vent)", y = "Vitesse du vent sqrt(Km/h)")
+
+boxplot_vent_square <- ggplot(data, aes(x = "", y = vent_square)) +
+  geom_boxplot(fill = "lightblue") +
+  labs(title = "Boxplot de vent^2", y = "Vitesse du vent (Km/h)^2")
+
+grid.arrange(boxplot_velos, boxplot_temperature1, boxplot_temperature1_sq, boxplot_temperature2, boxplot_temperature2_sq, boxplot_humidite, boxplot_humidite_sqrt, boxplot_humidite_square, boxplot_vent, boxplot_vent_sqrt, boxplot_vent_square, ncol = 4)
+

+
length_data <- nrow(data)
+numeric_vars <- sapply(data, is.numeric)
+total_outliers <- 0
+
+for (var in names(data)[numeric_vars]) {
+  data_outlier <- data[[var]]
+  Q1 <- quantile(data_outlier, 0.25)
+  Q3 <- quantile(data_outlier, 0.75)
+  IQR <- Q3 - Q1
+
+  lower_limit <- Q1 - 1.5 * IQR
+  upper_limit <- Q3 + 1.5 * IQR
+
+  outliers <- data[data_outlier < lower_limit | data_outlier > upper_limit,]
+  cat("Number of outliers for the variable", var, ":", nrow(outliers), "\n")
+  data <- data[data_outlier >= lower_limit & data_outlier <= upper_limit,]
+}
+
## Number of outliers for the variable velos : 0 
+## Number of outliers for the variable humidite : 5 
+## Number of outliers for the variable vent : 24 
+## Number of outliers for the variable temperature1 : 0 
+## Number of outliers for the variable temperature2 : 0 
+## Number of outliers for the variable humidite_sqrt : 1 
+## Number of outliers for the variable humidite_square : 0 
+## Number of outliers for the variable temperature1_square : 4 
+## Number of outliers for the variable temperature2_square : 11 
+## Number of outliers for the variable vent_square : 80 
+## Number of outliers for the variable vent_sqrt : 27
+
cat("Number of outliers removed :", length_data - nrow(data), "\n")
+
## Number of outliers removed : 152
+
cat("Data length after removing outliers :", nrow(data), "\n")
+
## Data length after removing outliers : 1665
+
+
+
+

Model Creation and Comparison

+
+

Data Split

+
set.seed(123)
+data_split <- rsample::initial_split(data, prop = 0.8)
+data_train <- rsample::training(data_split)
+data_test <- rsample::testing(data_split)
+
+
+

Choice of the Distribution vélos

+
model_poisson <- glm(velos ~ ., family = poisson, data = data_train)
+model_nb <- glm.nb(velos ~ ., data = data_train)
+model_gaussian <- glm(velos ~ ., family = gaussian, data = data_train)
+t(AIC(model_poisson, model_nb, model_gaussian)[2])
+
##     model_poisson model_nb model_gaussian
+## AIC      82988.75  17532.5       18420.81
+
dispersiontest(model_poisson)
+
## 
+##  Overdispersion test
+## 
+## data:  model_poisson
+## z = 20.793, p-value < 2.2e-16
+## alternative hypothesis: true dispersion is greater than 1
+## sample estimates:
+## dispersion 
+##   54.85188
+
mean_velos <- mean(data_train$velos)
+var_velos <- var(data_train$velos)
+cat("Mean :", mean_velos, "Variance :", var_velos, "\n")
+
## Mean : 693.4317 Variance : 214261.1
+
+
+

Model Selection

+
model_full_quantitative <- glm.nb(
+  velos ~ vent +
+    vent_square +
+    vent_sqrt +
+
+    humidite +
+    humidite_square +
+    humidite_sqrt +
+
+    temperature1_square +
+    temperature1 +
+
+    temperature2 +
+    temperature2_square
+  , data = data_train)
+summary(model_full_quantitative)
+
## 
+## Call:
+## glm.nb(formula = velos ~ vent + vent_square + vent_sqrt + humidite + 
+##     humidite_square + humidite_sqrt + temperature1_square + temperature1 + 
+##     temperature2 + temperature2_square, data = data_train, init.theta = 2.91504998, 
+##     link = log)
+## 
+## Coefficients:
+##                       Estimate Std. Error z value Pr(>|z|)    
+## (Intercept)          8.2125765  2.2378964   3.670 0.000243 ***
+## vent                 0.0281498  0.0499554   0.563 0.573096    
+## vent_square         -0.0002027  0.0004951  -0.409 0.682254    
+## vent_sqrt           -0.1673324  0.2546295  -0.657 0.511078    
+## humidite             0.1061905  0.0816427   1.301 0.193370    
+## humidite_square     -0.0004965  0.0002360  -2.104 0.035388 *  
+## humidite_sqrt       -0.8882801  0.8081472  -1.099 0.271700    
+## temperature1_square -0.0010461  0.0009065  -1.154 0.248518    
+## temperature1         0.0702146  0.0379386   1.851 0.064206 .  
+## temperature2         0.0260605  0.0252172   1.033 0.301397    
+## temperature2_square -0.0006738  0.0005534  -1.218 0.223397    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for Negative Binomial(2.915) family taken to be 1)
+## 
+##     Null deviance: 2358.2  on 1331  degrees of freedom
+## Residual deviance: 1408.9  on 1321  degrees of freedom
+## AIC: 19155
+## 
+## Number of Fisher Scoring iterations: 1
+## 
+## 
+##               Theta:  2.915 
+##           Std. Err.:  0.108 
+## 
+##  2 x log-likelihood:  -19131.246
+
anova(model_full_quantitative)
+
## Warning in anova.negbin(model_full_quantitative): tests made without
+## re-estimating 'theta'
+
## Analysis of Deviance Table
+## 
+## Model: Negative Binomial(2.915), link: log
+## 
+## Response: velos
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##                     Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
+## NULL                                 1331     2358.2              
+## vent                 1     8.84      1330     2349.3  0.002946 ** 
+## vent_square          1     4.04      1329     2345.3  0.044442 *  
+## vent_sqrt            1     0.33      1328     2345.0  0.568601    
+## humidite             1   183.86      1327     2161.1 < 2.2e-16 ***
+## humidite_square      1    48.09      1326     2113.0 4.067e-12 ***
+## humidite_sqrt        1     5.51      1325     2107.5  0.018912 *  
+## temperature1_square  1   431.26      1324     1676.2 < 2.2e-16 ***
+## temperature1         1   265.92      1323     1410.3 < 2.2e-16 ***
+## temperature2         1     0.02      1322     1410.3  0.898079    
+## temperature2_square  1     1.44      1321     1408.9  0.229603    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+
model_quantitative_quali <- glm.nb(
+  velos ~
+    vent +
+      vent_square +
+      vent_sqrt +
+      humidite +
+      humidite_square +
+      humidite_sqrt +
+      temperature1 +
+      temperature1_square +
+
+      horaire +
+      saison +
+      meteo +
+      mois +
+      vacances +
+      jour_travail +
+      jour_semaine +
+      jour_mois
+  , data = data_train)
+summary(model_quantitative_quali)
+
## 
+## Call:
+## glm.nb(formula = velos ~ vent + vent_square + vent_sqrt + humidite + 
+##     humidite_square + humidite_sqrt + temperature1 + temperature1_square + 
+##     horaire + saison + meteo + mois + vacances + jour_travail + 
+##     jour_semaine + jour_mois, data = data_train, init.theta = 10.11407919, 
+##     link = log)
+## 
+## Coefficients: (1 not defined because of singularities)
+##                       Estimate Std. Error z value Pr(>|z|)    
+## (Intercept)          5.7578159  1.2735469   4.521 6.15e-06 ***
+## vent                 0.0065391  0.0277120   0.236 0.813457    
+## vent_square          0.0000256  0.0002747   0.093 0.925750    
+## vent_sqrt           -0.0872814  0.1411176  -0.619 0.536245    
+## humidite             0.0718573  0.0465415   1.544 0.122603    
+## humidite_square     -0.0003074  0.0001352  -2.273 0.023026 *  
+## humidite_sqrt       -0.5879792  0.4597808  -1.279 0.200959    
+## temperature1         0.0538688  0.0050283  10.713  < 2e-16 ***
+## temperature1_square -0.0009887  0.0001523  -6.490 8.59e-11 ***
+## horaire2             1.4014996  0.0282339  49.639  < 2e-16 ***
+## horaire3             1.2441366  0.0342452  36.330  < 2e-16 ***
+## horaire4             1.6669509  0.0340096  49.014  < 2e-16 ***
+## horaire5             1.3009922  0.0289632  44.919  < 2e-16 ***
+## saison2              0.2113832  0.0569855   3.709 0.000208 ***
+## saison3              0.3238081  0.0647808   4.999 5.78e-07 ***
+## saison4              0.5120136  0.0557309   9.187  < 2e-16 ***
+## meteo2              -0.0388243  0.0227839  -1.704 0.088376 .  
+## meteo3              -0.4183265  0.0423535  -9.877  < 2e-16 ***
+## mois2                0.1673029  0.0489754   3.416 0.000635 ***
+## mois3                0.1690126  0.0550596   3.070 0.002143 ** 
+## mois4                0.2656971  0.0844978   3.144 0.001664 ** 
+## mois5                0.5093488  0.0894762   5.693 1.25e-08 ***
+## mois6                0.4535267  0.0938529   4.832 1.35e-06 ***
+## mois7                0.3494709  0.1036055   3.373 0.000743 ***
+## mois8                0.3217628  0.1007131   3.195 0.001399 ** 
+## mois9                0.3638295  0.0911294   3.992 6.54e-05 ***
+## mois10               0.2067528  0.0832300   2.484 0.012987 *  
+## mois11               0.1452113  0.0794983   1.827 0.067760 .  
+## mois12               0.1929111  0.0622809   3.097 0.001952 ** 
+## vacances2           -0.1803626  0.0653453  -2.760 0.005778 ** 
+## jour_travail2        0.0234146  0.0328769   0.712 0.476347    
+## jour_semaine2       -0.0435844  0.0340130  -1.281 0.200052    
+## jour_semaine3       -0.0365816  0.0336789  -1.086 0.277397    
+## jour_semaine4       -0.0390571  0.0331463  -1.178 0.238668    
+## jour_semaine5       -0.0133017  0.0336982  -0.395 0.693043    
+## jour_semaine6               NA         NA      NA       NA    
+## jour_semaine7        0.0302082  0.0329428   0.917 0.359148    
+## jour_mois2           0.0413982  0.0679635   0.609 0.542442    
+## jour_mois3           0.0756509  0.0680085   1.112 0.265978    
+## jour_mois4           0.1520220  0.0659987   2.303 0.021256 *  
+## jour_mois5           0.1174765  0.0679582   1.729 0.083870 .  
+## jour_mois6           0.0194055  0.0678443   0.286 0.774855    
+## jour_mois7           0.0515925  0.0695970   0.741 0.458510    
+## jour_mois8           0.0088355  0.0679031   0.130 0.896472    
+## jour_mois9           0.0763066  0.0669394   1.140 0.254314    
+## jour_mois10          0.1225251  0.0661751   1.852 0.064094 .  
+## jour_mois11          0.1082326  0.0713126   1.518 0.129085    
+## jour_mois12          0.0648527  0.0675506   0.960 0.337024    
+## jour_mois13          0.0099991  0.0692432   0.144 0.885181    
+## jour_mois14          0.0894572  0.0685495   1.305 0.191892    
+## jour_mois15          0.0621761  0.0702483   0.885 0.376108    
+## jour_mois16          0.0553908  0.0653521   0.848 0.396674    
+## jour_mois17          0.1266634  0.0669505   1.892 0.058505 .  
+## jour_mois18          0.0767661  0.0652818   1.176 0.239628    
+## jour_mois19          0.0961955  0.0675449   1.424 0.154397    
+## jour_mois20          0.1152297  0.0705546   1.633 0.102427    
+## jour_mois21          0.1368864  0.0705549   1.940 0.052362 .  
+## jour_mois22          0.0723416  0.0677257   1.068 0.285450    
+## jour_mois23          0.0672894  0.0678375   0.992 0.321236    
+## jour_mois24         -0.0371423  0.0678872  -0.547 0.584298    
+## jour_mois25          0.0099320  0.0686310   0.145 0.884935    
+## jour_mois26         -0.0009005  0.0681434  -0.013 0.989456    
+## jour_mois27         -0.0409743  0.0713894  -0.574 0.565999    
+## jour_mois28          0.0344889  0.0671148   0.514 0.607336    
+## jour_mois29          0.0385154  0.0673973   0.571 0.567683    
+## jour_mois30          0.1637766  0.0670492   2.443 0.014580 *  
+## jour_mois31          0.1191179  0.0777575   1.532 0.125544    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for Negative Binomial(10.1141) family taken to be 1)
+## 
+##     Null deviance: 8029.0  on 1331  degrees of freedom
+## Residual deviance: 1356.7  on 1266  degrees of freedom
+## AIC: 17531
+## 
+## Number of Fisher Scoring iterations: 1
+## 
+## 
+##               Theta:  10.114 
+##           Std. Err.:  0.398 
+## 
+##  2 x log-likelihood:  -17396.536
+
anova(model_quantitative_quali)
+
## Warning in anova.negbin(model_quantitative_quali): tests made without
+## re-estimating 'theta'
+
## Analysis of Deviance Table
+## 
+## Model: Negative Binomial(10.1141), link: log
+## 
+## Response: velos
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##                     Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
+## NULL                                 1331     8029.0              
+## vent                 1    30.35      1330     7998.6 3.609e-08 ***
+## vent_square          1    13.88      1329     7984.8 0.0001951 ***
+## vent_sqrt            1     1.12      1328     7983.6 0.2905323    
+## humidite             1   630.37      1327     7353.3 < 2.2e-16 ***
+## humidite_square      1   164.51      1326     7188.8 < 2.2e-16 ***
+## humidite_sqrt        1    18.83      1325     7169.9 1.426e-05 ***
+## temperature1         1  2047.02      1324     5122.9 < 2.2e-16 ***
+## temperature1_square  1   340.16      1323     4782.7 < 2.2e-16 ***
+## horaire              4  2909.21      1319     1873.5 < 2.2e-16 ***
+## saison               3   285.86      1316     1587.7 < 2.2e-16 ***
+## meteo                2   114.28      1314     1473.4 < 2.2e-16 ***
+## mois                11    66.77      1303     1406.6 4.995e-10 ***
+## vacances             1    10.42      1302     1396.2 0.0012449 ** 
+## jour_travail         1     1.30      1301     1394.9 0.2541936    
+## jour_semaine         5     4.18      1296     1390.7 0.5231791    
+## jour_mois           30    34.01      1266     1356.7 0.2803690    
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+
model_quanti_quali_final <- glm.nb(
+  velos ~
+    vent +
+      vent_square + #
+      humidite +
+      humidite_square +
+      humidite_sqrt + #
+      temperature1 +
+      temperature1_square +
+
+      horaire +
+      saison +
+      meteo +
+      mois +
+      vacances
+  , data = data_train)
+summary(model_quanti_quali_final)
+
## 
+## Call:
+## glm.nb(formula = velos ~ vent + vent_square + humidite + humidite_square + 
+##     humidite_sqrt + temperature1 + temperature1_square + horaire + 
+##     saison + meteo + mois + vacances, data = data_train, init.theta = 9.822854355, 
+##     link = log)
+## 
+## Coefficients:
+##                       Estimate Std. Error z value Pr(>|z|)    
+## (Intercept)          5.373e+00  1.248e+00   4.304 1.67e-05 ***
+## vent                -9.504e-03  4.036e-03  -2.355 0.018529 *  
+## vent_square          1.630e-04  9.481e-05   1.719 0.085660 .  
+## humidite             5.968e-02  4.615e-02   1.293 0.195913    
+## humidite_square     -2.771e-04  1.341e-04  -2.067 0.038757 *  
+## humidite_sqrt       -4.645e-01  4.559e-01  -1.019 0.308254    
+## temperature1         5.358e-02  4.882e-03  10.976  < 2e-16 ***
+## temperature1_square -1.033e-03  1.469e-04  -7.034 2.00e-12 ***
+## horaire2             1.398e+00  2.847e-02  49.083  < 2e-16 ***
+## horaire3             1.248e+00  3.442e-02  36.244  < 2e-16 ***
+## horaire4             1.668e+00  3.414e-02  48.867  < 2e-16 ***
+## horaire5             1.298e+00  2.919e-02  44.454  < 2e-16 ***
+## saison2              2.114e-01  5.714e-02   3.700 0.000216 ***
+## saison3              3.146e-01  6.485e-02   4.851 1.23e-06 ***
+## saison4              4.924e-01  5.589e-02   8.810  < 2e-16 ***
+## meteo2              -3.463e-02  2.274e-02  -1.523 0.127822    
+## meteo3              -4.184e-01  4.210e-02  -9.938  < 2e-16 ***
+## mois2                1.657e-01  4.924e-02   3.366 0.000762 ***
+## mois3                1.718e-01  5.498e-02   3.125 0.001777 ** 
+## mois4                2.794e-01  8.413e-02   3.321 0.000898 ***
+## mois5                5.298e-01  8.927e-02   5.934 2.95e-09 ***
+## mois6                4.858e-01  9.293e-02   5.227 1.72e-07 ***
+## mois7                3.945e-01  1.026e-01   3.846 0.000120 ***
+## mois8                3.642e-01  9.993e-02   3.644 0.000268 ***
+## mois9                4.037e-01  9.013e-02   4.479 7.49e-06 ***
+## mois10               2.384e-01  8.283e-02   2.878 0.004005 ** 
+## mois11               1.710e-01  7.934e-02   2.155 0.031136 *  
+## mois12               2.175e-01  6.227e-02   3.493 0.000478 ***
+## vacances2           -1.746e-01  5.379e-02  -3.246 0.001170 ** 
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for Negative Binomial(9.8229) family taken to be 1)
+## 
+##     Null deviance: 7803.6  on 1331  degrees of freedom
+## Residual deviance: 1357.7  on 1303  degrees of freedom
+## AIC: 17496
+## 
+## Number of Fisher Scoring iterations: 1
+## 
+## 
+##               Theta:  9.823 
+##           Std. Err.:  0.386 
+## 
+##  2 x log-likelihood:  -17436.000
+
model_0 <- glm.nb(velos ~ 1, data = data_train)
+model_forward <- stepAIC(
+  model_0,
+  vélos ~ vent +
+    humidite +
+    humidite_square +
+    temperature1 +
+    temperature1_square +
+
+    horaire +
+    saison +
+    meteo +
+    mois +
+    vacances,
+  data = data_train,
+  trace = FALSE,
+  direction = "forward"
+)
+model_backward <- stepAIC(
+  model_quanti_quali_final,
+  ~1,
+  trace = FALSE,
+  direction = "backward"
+)
+model_both <- stepAIC(
+  model_0,
+  vélos ~ vent +
+    humidite +
+    humidite_square +
+    temperature1 +
+    temperature1_square +
+
+    horaire +
+    saison +
+    meteo +
+    mois +
+    vacances,
+  data = data_train,
+  trace = FALSE,
+  direction = "both"
+)
+AIC(model_forward, model_both, model_backward)
+
##                df      AIC
+## model_forward  28 17496.08
+## model_both     28 17496.08
+## model_backward 29 17495.00
+
summary(model_forward)
+
## 
+## Call:
+## glm.nb(formula = velos ~ horaire + mois + meteo + temperature1 + 
+##     saison + humidite_square + temperature1_square + humidite + 
+##     vacances + vent, data = data_train, init.theta = 9.793225092, 
+##     link = log)
+## 
+## Coefficients:
+##                       Estimate Std. Error z value Pr(>|z|)    
+## (Intercept)          4.073e+00  1.134e-01  35.913  < 2e-16 ***
+## horaire2             1.397e+00  2.851e-02  49.005  < 2e-16 ***
+## horaire3             1.247e+00  3.442e-02  36.232  < 2e-16 ***
+## horaire4             1.668e+00  3.419e-02  48.794  < 2e-16 ***
+## horaire5             1.296e+00  2.921e-02  44.351  < 2e-16 ***
+## mois2                1.675e-01  4.927e-02   3.399 0.000676 ***
+## mois3                1.740e-01  5.504e-02   3.161 0.001573 ** 
+## mois4                2.850e-01  8.407e-02   3.390 0.000700 ***
+## mois5                5.331e-01  8.929e-02   5.971 2.36e-09 ***
+## mois6                4.899e-01  9.302e-02   5.266 1.39e-07 ***
+## mois7                4.001e-01  1.027e-01   3.896 9.77e-05 ***
+## mois8                3.725e-01  9.997e-02   3.726 0.000195 ***
+## mois9                4.072e-01  9.024e-02   4.512 6.42e-06 ***
+## mois10               2.420e-01  8.290e-02   2.919 0.003510 ** 
+## mois11               1.733e-01  7.945e-02   2.181 0.029176 *  
+## mois12               2.213e-01  6.234e-02   3.550 0.000385 ***
+## meteo2              -3.797e-02  2.272e-02  -1.672 0.094590 .  
+## meteo3              -4.297e-01  4.158e-02 -10.334  < 2e-16 ***
+## temperature1         5.379e-02  4.887e-03  11.007  < 2e-16 ***
+## saison2              2.070e-01  5.679e-02   3.644 0.000268 ***
+## saison3              3.105e-01  6.468e-02   4.801 1.58e-06 ***
+## saison4              4.910e-01  5.597e-02   8.773  < 2e-16 ***
+## humidite_square     -1.372e-04  2.661e-05  -5.157 2.51e-07 ***
+## temperature1_square -1.045e-03  1.468e-04  -7.113 1.13e-12 ***
+## humidite             1.206e-02  3.387e-03   3.560 0.000371 ***
+## vacances2           -1.718e-01  5.383e-02  -3.192 0.001414 ** 
+## vent                -2.818e-03  1.028e-03  -2.741 0.006118 ** 
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for Negative Binomial(9.7932) family taken to be 1)
+## 
+##     Null deviance: 7780.7  on 1331  degrees of freedom
+## Residual deviance: 1357.8  on 1305  degrees of freedom
+## AIC: 17496
+## 
+## Number of Fisher Scoring iterations: 1
+## 
+## 
+##               Theta:  9.793 
+##           Std. Err.:  0.385 
+## 
+##  2 x log-likelihood:  -17440.082
+
model_final_without_interaction <- glm.nb(
+  velos ~ horaire +
+    mois +
+    meteo +
+    temperature1 +
+    saison +
+    temperature1_square +
+    humidite_square +
+    vacances +
+    humidite +
+    vent
+  , data = data_train)
+summary(model_final_without_interaction)
+
## 
+## Call:
+## glm.nb(formula = velos ~ horaire + mois + meteo + temperature1 + 
+##     saison + temperature1_square + humidite_square + vacances + 
+##     humidite + vent, data = data_train, init.theta = 9.793225092, 
+##     link = log)
+## 
+## Coefficients:
+##                       Estimate Std. Error z value Pr(>|z|)    
+## (Intercept)          4.073e+00  1.134e-01  35.913  < 2e-16 ***
+## horaire2             1.397e+00  2.851e-02  49.005  < 2e-16 ***
+## horaire3             1.247e+00  3.442e-02  36.232  < 2e-16 ***
+## horaire4             1.668e+00  3.419e-02  48.794  < 2e-16 ***
+## horaire5             1.296e+00  2.921e-02  44.351  < 2e-16 ***
+## mois2                1.675e-01  4.927e-02   3.399 0.000676 ***
+## mois3                1.740e-01  5.504e-02   3.161 0.001573 ** 
+## mois4                2.850e-01  8.407e-02   3.390 0.000700 ***
+## mois5                5.331e-01  8.929e-02   5.971 2.36e-09 ***
+## mois6                4.899e-01  9.302e-02   5.266 1.39e-07 ***
+## mois7                4.001e-01  1.027e-01   3.896 9.77e-05 ***
+## mois8                3.725e-01  9.997e-02   3.726 0.000195 ***
+## mois9                4.072e-01  9.024e-02   4.512 6.42e-06 ***
+## mois10               2.420e-01  8.290e-02   2.919 0.003510 ** 
+## mois11               1.733e-01  7.945e-02   2.181 0.029176 *  
+## mois12               2.213e-01  6.234e-02   3.550 0.000385 ***
+## meteo2              -3.797e-02  2.272e-02  -1.672 0.094590 .  
+## meteo3              -4.297e-01  4.158e-02 -10.334  < 2e-16 ***
+## temperature1         5.379e-02  4.887e-03  11.007  < 2e-16 ***
+## saison2              2.070e-01  5.679e-02   3.644 0.000268 ***
+## saison3              3.105e-01  6.468e-02   4.801 1.58e-06 ***
+## saison4              4.910e-01  5.597e-02   8.773  < 2e-16 ***
+## temperature1_square -1.045e-03  1.468e-04  -7.113 1.13e-12 ***
+## humidite_square     -1.372e-04  2.661e-05  -5.157 2.51e-07 ***
+## vacances2           -1.718e-01  5.383e-02  -3.192 0.001414 ** 
+## humidite             1.206e-02  3.387e-03   3.560 0.000371 ***
+## vent                -2.818e-03  1.028e-03  -2.741 0.006118 ** 
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for Negative Binomial(9.7932) family taken to be 1)
+## 
+##     Null deviance: 7780.7  on 1331  degrees of freedom
+## Residual deviance: 1357.8  on 1305  degrees of freedom
+## AIC: 17496
+## 
+## Number of Fisher Scoring iterations: 1
+## 
+## 
+##               Theta:  9.793 
+##           Std. Err.:  0.385 
+## 
+##  2 x log-likelihood:  -17440.082
+
+
+

Final Model

+
+

Choice and Validation of the Model

+
model_final <- glm.nb(
+  velos ~ horaire +
+    mois +
+    meteo +
+    temperature1 +
+    saison +
+    temperature1_square +
+    humidite_square +
+    vacances +
+    humidite +
+    vent +
+
+    horaire:temperature1 +
+    temperature1_square:mois
+  , data = data_train
+)
+summary(model_final)
+
## 
+## Call:
+## glm.nb(formula = velos ~ horaire + mois + meteo + temperature1 + 
+##     saison + temperature1_square + humidite_square + vacances + 
+##     humidite + vent + horaire:temperature1 + temperature1_square:mois, 
+##     data = data_train, init.theta = 10.64651881, link = log)
+## 
+## Coefficients:
+##                              Estimate Std. Error z value Pr(>|z|)    
+## (Intercept)                 4.1688082  0.1195673  34.866  < 2e-16 ***
+## horaire2                    1.6136959  0.0494090  32.660  < 2e-16 ***
+## horaire3                    1.3248624  0.0622321  21.289  < 2e-16 ***
+## horaire4                    1.6124217  0.0611669  26.361  < 2e-16 ***
+## horaire5                    1.1846038  0.0526976  22.479  < 2e-16 ***
+## mois2                       0.1166036  0.0554402   2.103 0.035446 *  
+## mois3                       0.0947222  0.0664671   1.425 0.154128    
+## mois4                       0.0604694  0.0986704   0.613 0.539980    
+## mois5                       0.5272220  0.1174380   4.489 7.14e-06 ***
+## mois6                       0.6533283  0.1542792   4.235 2.29e-05 ***
+## mois7                       0.7377272  0.1852322   3.983 6.81e-05 ***
+## mois8                       0.4846330  0.1807033   2.682 0.007320 ** 
+## mois9                       0.4051305  0.1386855   2.921 0.003487 ** 
+## mois10                      0.1218501  0.1020733   1.194 0.232575    
+## mois11                      0.2258393  0.0942154   2.397 0.016528 *  
+## mois12                      0.1426387  0.0728088   1.959 0.050103 .  
+## meteo2                     -0.0120673  0.0220598  -0.547 0.584360    
+## meteo3                     -0.4136117  0.0404725 -10.220  < 2e-16 ***
+## temperature1                0.0509424  0.0074086   6.876 6.15e-12 ***
+## saison2                     0.2240149  0.0552593   4.054 5.04e-05 ***
+## saison3                     0.3385659  0.0625326   5.414 6.16e-08 ***
+## saison4                     0.5050795  0.0538878   9.373  < 2e-16 ***
+## temperature1_square        -0.0036795  0.0012369  -2.975 0.002931 ** 
+## humidite_square            -0.0001265  0.0000264  -4.792 1.65e-06 ***
+## vacances2                  -0.1925533  0.0524129  -3.674 0.000239 ***
+## humidite                    0.0101473  0.0033687   3.012 0.002593 ** 
+## vent                       -0.0033359  0.0010029  -3.326 0.000880 ***
+## horaire2:temperature1      -0.0157180  0.0031003  -5.070 3.98e-07 ***
+## horaire3:temperature1      -0.0047919  0.0035916  -1.334 0.182146    
+## horaire4:temperature1       0.0028109  0.0035586   0.790 0.429588    
+## horaire5:temperature1       0.0067708  0.0031848   2.126 0.033508 *  
+## mois2:temperature1_square   0.0027785  0.0011641   2.387 0.016998 *  
+## mois3:temperature1_square   0.0032223  0.0011660   2.764 0.005716 ** 
+## mois4:temperature1_square   0.0036563  0.0011573   3.159 0.001581 ** 
+## mois5:temperature1_square   0.0027471  0.0011715   2.345 0.019033 *  
+## mois6:temperature1_square   0.0024540  0.0011820   2.076 0.037883 *  
+## mois7:temperature1_square   0.0022636  0.0011880   1.905 0.056727 .  
+## mois8:temperature1_square   0.0025486  0.0011881   2.145 0.031948 *  
+## mois9:temperature1_square   0.0027241  0.0011786   2.311 0.020818 *  
+## mois10:temperature1_square  0.0032170  0.0011638   2.764 0.005706 ** 
+## mois11:temperature1_square  0.0022141  0.0011684   1.895 0.058106 .  
+## mois12:temperature1_square  0.0034507  0.0012066   2.860 0.004237 ** 
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+## 
+## (Dispersion parameter for Negative Binomial(10.6465) family taken to be 1)
+## 
+##     Null deviance: 8440.1  on 1331  degrees of freedom
+## Residual deviance: 1357.4  on 1290  degrees of freedom
+## AIC: 17416
+## 
+## Number of Fisher Scoring iterations: 1
+## 
+## 
+##               Theta:  10.647 
+##           Std. Err.:  0.420 
+## 
+##  2 x log-likelihood:  -17329.890
+
anova(model_final, test = "Chisq")
+
## Warning in anova.negbin(model_final, test = "Chisq"): tests made without
+## re-estimating 'theta'
+
## Analysis of Deviance Table
+## 
+## Model: Negative Binomial(10.6465), link: log
+## 
+## Response: velos
+## 
+## Terms added sequentially (first to last)
+## 
+## 
+##                          Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
+## NULL                                      1331     8440.1              
+## horaire                   4   4252.9      1327     4187.3 < 2.2e-16 ***
+## mois                     11   2126.6      1316     2060.7 < 2.2e-16 ***
+## meteo                     2    306.4      1314     1754.2 < 2.2e-16 ***
+## temperature1              1     78.8      1313     1675.4 < 2.2e-16 ***
+## saison                    3     72.3      1310     1603.2 1.385e-15 ***
+## temperature1_square       1     40.2      1309     1563.0 2.294e-10 ***
+## humidite_square           1     60.0      1308     1503.0 9.541e-15 ***
+## vacances                  1      9.2      1307     1493.8 0.0024119 ** 
+## humidite                  1     13.4      1306     1480.4 0.0002541 ***
+## vent                      1      8.1      1305     1472.3 0.0043736 ** 
+## horaire:temperature1      4     71.0      1301     1401.2 1.371e-14 ***
+## mois:temperature1_square 11     43.8      1290     1357.4 7.908e-06 ***
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+
lrtest(model_final, model_final_without_interaction)
+
## Likelihood ratio test
+## 
+## Model 1: velos ~ horaire + mois + meteo + temperature1 + saison + temperature1_square + 
+##     humidite_square + vacances + humidite + vent + horaire:temperature1 + 
+##     temperature1_square:mois
+## Model 2: velos ~ horaire + mois + meteo + temperature1 + saison + temperature1_square + 
+##     humidite_square + vacances + humidite + vent
+##   #Df  LogLik  Df  Chisq Pr(>Chisq)    
+## 1  43 -8664.9                          
+## 2  28 -8720.0 -15 110.19  < 2.2e-16 ***
+## ---
+## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+
dispersion_ratio <- sum(residuals(model_final, type = "pearson")^2) / df.residual(model_final)
+print(paste("Dispersion Ratio:", round(dispersion_ratio, 2)))
+
## [1] "Dispersion Ratio: 0.97"
+
hist(residuals(model_final, type = "deviance"), breaks = 30, freq = FALSE, col = "lightblue", main = "Histogram of Deviance Residuals")
+x <- seq(-5, 5, length = 100)
+curve(dnorm(x), col = "darkblue", lwd = 2, add = TRUE)
+

+
autoplot(model_final, 1:4)
+

+
library(arm)
+
## Loading required package: Matrix
+
## Loading required package: lme4
+
## 
+## arm (Version 1.14-4, built: 2024-4-1)
+
## Working directory is /Users/arthurdanjou/Workspace/studies/M1/General Linear Models/Projet
+
## 
+## Attaching package: 'arm'
+
## The following object is masked from 'package:corrplot':
+## 
+##     corrplot
+
## The following object is masked from 'package:car':
+## 
+##     logit
+
binnedplot(fitted(model_final), residuals(model_final, type = "deviance"), col.int = "blue", col.pts = 2)
+

+
+
+
+
+

Performance and Limitations of the Final Model

+
+

Predictions and Mean Square Error

+
data_test$predictions <- predict(model_final, newdata = data_test, type = "response")
+data_train$predictions <- predict(model_final, newdata = data_train, type = "response")
+
+predictions_ci <- predict(
+  model_final,
+  newdata = data_test,
+  type = "link",
+  se.fit = TRUE
+)
+
+data_test$lwr <- exp(predictions_ci$fit - 1.96 * predictions_ci$se.fit)
+data_test$upr <- exp(predictions_ci$fit + 1.96 * predictions_ci$se.fit)
+
+MSE <- mean((data_test$velos - data_test$predictions)^2)
+cat("MSE :", MSE, "\n")
+
## MSE : 43331
+
cat("RMSE train :", sqrt(mean((data_train$velos - data_train$predictions)^2)), "\n")
+
## RMSE train : 195.0359
+
cat('RMSE :', sqrt(MSE), '\n')
+
## RMSE : 208.161
+
+
+

Evaluation of Model Performance

+
bounds <- c(200, 650)
+
+cat("Observations vs Prédictions\n")
+
## Observations vs Prédictions
+
cat(nrow(data_test[data_test$velos < bounds[1],]), "vs", sum(data_test$predictions < bounds[1]), "\n")
+
## 50 vs 39
+
cat(nrow(data_test[data_test$velos > bounds[1] & data_test$velos < bounds[2],]), "vs", sum(data_test$predictions > bounds[1] & data_test$predictions < bounds[2]), "\n")
+
## 124 vs 128
+
cat(nrow(data_test[data_test$velos > bounds[2],]), "vs", sum(data_test$predictions > bounds[2]), "\n")
+
## 159 vs 166
+
cat('\n')
+
categories <- c(0, bounds, Inf)
+categories_label <- c("Low", "Mid", "High")
+
+data_test$velos_cat <- cut(data_test$velos,
+                           breaks = categories,
+                           labels = categories_label,
+                           include.lowest = TRUE)
+data_test$predictions_cat <- cut(data_test$predictions,
+                                 breaks = categories,
+                                 labels = categories_label,
+                                 include.lowest = TRUE)
+conf_matrix <- confusionMatrix(data_test$velos_cat, data_test$predictions_cat)
+conf_matrix
+
## Confusion Matrix and Statistics
+## 
+##           Reference
+## Prediction Low Mid High
+##       Low   36  14    0
+##       Mid    3  95   26
+##       High   0  19  140
+## 
+## Overall Statistics
+##                                           
+##                Accuracy : 0.8138          
+##                  95% CI : (0.7678, 0.8542)
+##     No Information Rate : 0.4985          
+##     P-Value [Acc > NIR] : < 2.2e-16       
+##                                           
+##                   Kappa : 0.6903          
+##                                           
+##  Mcnemar's Test P-Value : NA              
+## 
+## Statistics by Class:
+## 
+##                      Class: Low Class: Mid Class: High
+## Sensitivity              0.9231     0.7422      0.8434
+## Specificity              0.9524     0.8585      0.8862
+## Pos Pred Value           0.7200     0.7661      0.8805
+## Neg Pred Value           0.9894     0.8421      0.8506
+## Prevalence               0.1171     0.3844      0.4985
+## Detection Rate           0.1081     0.2853      0.4204
+## Detection Prevalence     0.1502     0.3724      0.4775
+## Balanced Accuracy        0.9377     0.8004      0.8648
+
ggplot(data_test, aes(x = velos, y = predictions)) +
+  geom_point(color = "blue", alpha = 0.6, size = 2) +
+  geom_abline(slope = 1, intercept = 0, color = "red", linetype = "dashed") +
+  geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.2, fill = "grey") +
+  labs(
+    title = "Comparison of Observed and Predicted Bikes",
+    x = "Number of Observed Bikes",
+    y = "Number of Predicted Bikes"
+  ) +
+  theme_minimal()
+

+
ggplot(data_test, aes(x = velos_cat, fill = predictions_cat)) +
+  geom_bar(position = "dodge") +
+  labs(title = "Predictions vs Observations (by categories)",
+       x = "Observed categories", y = "Number of predictions")
+

+
df_plot <- data.frame(observed = data_test$velos, predicted = data_test$predictions)
+
+# Créer l'histogramme avec la courbe de densité
+ggplot(df_plot, aes(x = observed)) +
+  geom_histogram(aes(y = ..density..), binwidth = 50, fill = "lightblue", color = "black", alpha = 0.7) + # Histogramme des données observées
+  geom_density(aes(x = predicted), color = "red", size = 1) + # Courbe de densité des valeurs prédites
+  labs(title = "Observed distribution vs. Predicted distribution",
+       x = "Number of vélos",
+       y = "Density") +
+  theme_bw()
+
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
+## ℹ Please use `linewidth` instead.
+## This warning is displayed once every 8 hours.
+## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
+## generated.
+
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
+## ℹ Please use `after_stat(density)` instead.
+## This warning is displayed once every 8 hours.
+## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
+## generated.
+

+
+
+ + + + +
+ + + + + + + + + + + + + + + diff --git a/M1/General Linear Models/Projet/projet.csv b/M1/General Linear Models/Projet/projet.csv new file mode 100644 index 0000000..a728809 --- /dev/null +++ b/M1/General Linear Models/Projet/projet.csv @@ -0,0 +1,1818 @@ +obs,saison,mois,jour_mois,jour_semaine,horaire,jour_travail,vacances,meteo,velos,humidite,vent,temperature1,temperature2 +1,1,1,1,7,1,1,1,1,105,78,1.38,2.88,2.29 +2,1,1,1,7,2,1,1,1,61,78.25,6.84,5.39,5.25 +3,1,1,1,7,3,1,1,1,340,75.5,30.98,11.98,11.5 +4,1,1,1,7,4,1,1,2,305,82.25,30.58,12.21,12.5 +5,1,1,1,7,5,1,1,2,174,88.8,26.39,11.55,11.8 +6,1,1,2,1,1,1,1,2,54,91.17,27.36,12.84,13.16 +7,1,1,2,1,2,1,1,2,82,76,23.34,10.09,9.75 +8,1,1,2,1,3,1,1,2,297,69.75,23.74,8.92,6.5 +9,1,1,2,1,4,1,1,3,268,63.75,22.93,8.21,6 +10,1,1,2,1,5,1,1,1,100,43.2,34.44,4.6,0.2 +11,1,1,3,2,1,2,1,1,41,46.4,39.59,0.27,-6.2 +12,1,1,3,2,2,2,1,1,350,46.5,30.18,-0.71,-6.75 +13,1,1,3,2,3,2,1,1,250,35,32.19,2.81,-2 +14,1,1,3,2,4,2,1,1,462,30.5,22.53,3.75,0 +15,1,1,3,2,5,2,1,1,246,56.4,10.3,0.46,-2.2 +16,1,1,4,3,1,2,1,1,50,63.67,11.54,-1.42,-5 +17,1,1,4,3,2,2,1,1,415,69,22.93,-1.18,-6.25 +18,1,1,4,3,3,2,1,1,295,52.5,23.74,3.04,-0.75 +19,1,1,4,3,4,2,1,1,542,49.25,24.94,5.16,2 +20,1,1,4,3,5,2,1,1,260,58.6,8.37,2.53,0.8 +21,1,1,5,4,1,2,1,1,52,59,14.22,1.24,-1.66 +22,1,1,5,4,2,2,1,1,455,39.25,30.98,1.63,-3.5 +23,1,1,5,4,3,2,1,1,258,31,30.98,4.93,0.5 +24,1,1,5,4,4,2,1,1,510,33,16.49,4.69,1.75 +25,1,1,5,4,5,2,1,1,325,47.6,12.87,1.78,-1 +26,1,1,6,5,1,2,1,1,58,63.17,5.1,-0.64,-2.33 +27,1,1,6,5,2,2,1,2,481,54,0,0.23,-0.25 +28,1,1,6,5,3,2,1,1,280,37.5,9.66,3.99,2 +29,1,1,6,5,4,2,1,1,483,44,12.47,3.52,0.25 +30,1,1,6,5,5,2,1,2,304,54.2,20.6,1.96,-1.6 +31,1,1,7,6,1,2,1,2,65,65.83,13.95,1.56,-1.33 +32,1,1,7,6,2,2,1,1,491,51,27.36,1.64,-3 +33,1,1,7,6,3,2,1,2,249,38.5,27.36,1.4,-3.25 +34,1,1,7,6,4,2,1,2,469,37.75,11.27,1.4,-1 +35,1,1,7,6,5,2,1,1,236,48.6,14.16,0.27,-2.8 +36,1,1,8,7,1,1,1,2,72,59.86,14.03,0.19,-3 +37,1,1,8,7,2,1,1,3,105,85,12.88,-0.24,-3.75 +38,1,1,8,7,3,1,1,2,357,51,42.25,1.4,-4.25 +39,1,1,8,7,4,1,1,1,274,34.25,47.07,-0.01,-7 +40,1,1,8,7,5,1,1,1,151,37.2,36.69,-2.36,-9.2 +41,1,1,9,1,1,1,1,1,55,47.29,37.02,-3.57,-10.86 +42,1,1,9,1,2,1,1,1,84,47.75,37.42,-2.83,-10 +43,1,1,9,1,3,1,1,1,279,35.75,50.7,0.93,-6 +44,1,1,9,1,4,1,1,1,284,36.5,41.04,0.93,-5.25 +45,1,1,9,1,5,1,1,1,120,46.2,32.19,-1.42,-7.8 +46,1,1,10,2,1,2,1,1,47,51.14,25.98,-2.63,-8.14 +47,1,1,10,2,2,2,1,2,390,50,28.57,-1.89,-8 +48,1,1,10,2,3,2,1,2,183,41.75,28.97,0.93,-4.5 +49,1,1,10,2,4,2,1,1,452,40,18.51,1.4,-2.25 +50,1,1,10,2,5,2,1,1,249,54.8,18.35,-1.04,-5.8 +51,1,1,11,3,1,2,1,2,51,56.6,15.77,-0.86,-5 +52,1,1,11,3,2,2,1,2,500,52,11.27,0.46,-2 +53,1,1,11,3,3,2,1,2,207,54,11.27,1.4,-1.25 +54,1,1,11,3,4,2,1,2,354,86.25,17.3,-0.48,-4.75 +55,1,1,11,3,5,2,1,3,151,91.6,10.3,-0.48,-3.4 +56,1,1,12,4,1,2,1,1,35,87.4,13.52,-1.23,-5 +57,1,1,12,4,2,2,1,1,302,60.5,22.93,-0.48,-5.5 +58,1,1,12,4,3,2,1,1,183,47.25,44.66,1.64,-4.25 +59,1,1,12,4,4,2,1,1,393,46.25,43.86,1.64,-4.5 +60,1,1,12,4,5,2,1,1,249,53.2,41.85,-0.48,-7.4 +61,1,1,13,5,1,2,1,1,49,51.86,29.89,-1.55,-7.72 +62,1,1,13,5,2,2,1,1,451,51,27.36,-1.42,-7 +63,1,1,13,5,3,2,1,1,214,42.5,45.87,1.87,-4 +64,1,1,13,5,4,2,1,1,444,39,34.2,2.34,-3 +65,1,1,13,5,5,2,1,1,248,47.2,28,-1.23,-7 +66,1,1,14,6,1,2,1,1,46,53.33,12.34,-3.14,-6.83 +67,1,1,14,6,2,2,1,1,389,66.5,13.28,-1.66,-5.75 +68,1,1,14,6,3,2,1,1,255,43.25,32.59,1.63,-3.25 +69,1,1,14,6,4,2,1,1,456,41.75,11.67,2.34,0 +70,1,1,14,6,5,2,1,1,275,62.2,1.93,-0.1,-1 +71,1,1,15,7,1,1,1,2,77,59,4.37,-0.48,-2 +72,1,1,15,7,2,1,1,1,125,62.25,11.67,-0.71,-3.75 +73,1,1,15,7,3,1,1,1,380,45,27.76,3.99,0 +74,1,1,15,7,4,1,1,2,424,37.75,24.94,7.04,4.5 +75,1,1,15,7,5,1,1,2,242,40.8,24.14,6.66,4 +76,1,1,16,1,1,1,1,1,97,57.86,11.04,3.95,2 +77,1,1,16,1,2,1,1,1,132,53.25,30.18,2.57,-2 +78,1,1,16,1,3,1,1,1,406,39,29.37,3.99,-0.5 +79,1,1,16,1,4,1,1,1,384,38.25,24.14,2.81,-1.25 +80,1,1,16,1,5,1,1,1,185,46.8,15.13,0.84,-2.4 +81,1,1,17,2,1,1,2,2,52,43.71,20.92,0.73,-3.57 +82,1,1,17,2,2,1,2,2,150,48.5,22.53,-0.48,-5.5 +83,1,1,17,2,3,1,2,2,323,48,15.29,0.22,-3.5 +84,1,1,17,2,4,1,2,2,338,50,20.92,1.17,-3 +85,1,1,17,2,5,1,2,3,137,79.6,24.14,-0.48,-6.2 +86,1,1,18,3,3,2,1,2,53,84,25.75,1.71,-2.67 +87,1,1,18,3,4,2,1,2,354,84,19.31,2.34,-1 +88,1,1,18,3,5,2,1,2,276,89.2,7.08,2.34,0.8 +89,1,1,19,4,1,2,1,3,54,93,10.46,2.34,0.17 +90,1,1,19,4,2,2,1,2,443,92.75,12.07,3.51,1.25 +91,1,1,19,4,3,2,1,2,275,72,19.31,8.21,7.75 +92,1,1,19,4,4,2,1,1,544,57.5,34.6,9.39,8 +93,1,1,19,4,5,2,1,1,334,51.8,37.98,6.66,3.2 +94,1,1,20,5,1,2,1,1,63,57.14,17.93,3.82,0.29 +95,1,1,20,5,2,2,1,1,550,52.5,27.76,3.04,-1.5 +96,1,1,20,5,3,2,1,2,331,44.25,10.86,5.63,3.75 +97,1,1,20,5,4,2,1,2,561,49.75,16.9,5.86,3.75 +98,1,1,20,5,5,2,1,2,422,61.2,31.87,3.66,-1.2 +99,1,1,21,6,1,2,1,2,63,71,26.67,2.88,-1.14 +100,1,1,21,6,2,2,1,1,514,49,38.63,1.4,-4.25 +101,1,1,21,6,3,2,1,1,272,28.5,57.94,1.87,-5 +102,1,1,21,6,4,2,1,1,443,27.5,38.22,-1.18,-7.75 +103,1,1,21,6,5,2,1,1,251,36,37.66,-4.05,-11.6 +104,1,1,22,7,1,1,1,2,48,43.33,30.58,-6.43,-14.5 +105,1,1,22,7,2,1,1,1,128,42.5,27.76,-6.59,-14.25 +106,1,1,22,7,3,1,1,2,292,36,9.25,-4.47,-8 +107,1,1,22,7,4,1,1,1,307,29.75,10.46,-2.83,-6.5 +108,1,1,22,7,5,1,1,1,206,45.4,10.62,-5.18,-9.2 +109,1,1,23,1,1,1,1,1,62,58.67,12.34,-6.43,-11.33 +110,1,1,23,1,2,1,1,1,107,55,28.97,-3.53,-10 +111,1,1,23,1,3,1,1,1,412,35.25,38.63,-0.95,-7.75 +112,1,1,23,1,4,1,1,1,246,27.5,35.81,-1.18,-7.75 +113,1,1,23,1,5,1,1,1,159,36.2,24.78,-3.68,-9.6 +114,1,1,24,2,1,2,1,1,30,45.83,17.97,-6.43,-12.33 +115,1,1,24,2,2,2,1,1,403,45,0,-5.42,-7 +116,1,1,24,2,3,2,1,2,214,44.25,20.92,-2.12,-7.25 +117,1,1,24,2,4,2,1,1,464,49,23.33,-0.95,-6.5 +118,1,1,24,2,5,2,1,1,305,60.6,21.57,-1.23,-6.4 +119,1,1,25,3,1,2,1,1,62,71.5,19.85,-0.79,-5.67 +120,1,1,25,3,2,2,1,2,545,68,14.89,0.7,-2.75 +121,1,1,25,3,3,2,1,2,328,54.25,9.66,4.46,2.75 +122,1,1,25,3,4,2,1,2,647,44.5,2.42,6.57,6.25 +123,1,1,25,3,5,2,1,1,403,64.6,18.99,3.09,-0.6 +124,1,1,26,4,1,2,1,3,41,75,22.21,2.15,-2 +125,1,1,26,4,2,2,1,3,188,88.5,31.78,2.34,-2 +126,1,1,26,4,3,2,1,3,172,93,36.21,2.34,-3 +127,1,1,26,4,4,2,1,3,105,93,41.31,2.03,-3.67 +128,1,1,27,5,4,2,1,1,212,59.67,13.95,2.03,-0.67 +129,1,1,27,5,5,2,1,1,219,74.2,11.27,0.65,-2 +130,1,1,28,6,1,2,1,2,35,76.67,13.95,1.09,-2 +131,1,1,28,6,2,2,1,2,367,86,10.06,-0.01,-2.5 +132,1,1,28,6,3,2,1,3,128,89.75,8.45,0.93,-1 +133,1,1,28,6,4,2,1,1,379,79,8.85,2.57,0.5 +134,1,1,28,6,5,2,1,2,258,69,22.53,3.09,-1 +135,1,1,29,7,1,1,1,1,76,64.83,19.58,1.24,-2.5 +136,1,1,29,7,2,1,1,1,128,59.25,12.48,0.22,-2.75 +137,1,1,29,7,3,1,1,2,306,59.5,16.9,1.63,-2 +138,1,1,29,7,4,1,1,1,386,64.5,14.89,2.81,0 +139,1,1,29,7,5,1,1,1,202,75.4,13.2,0.46,-2.4 +140,1,1,30,1,1,1,1,1,85,85.33,1.88,-1.11,-2.17 +141,1,1,30,1,2,1,1,2,117,83,0,-0.71,-1.25 +142,1,1,30,1,3,1,1,1,362,62.25,8.05,4.69,3.5 +143,1,1,30,1,4,1,1,1,374,58.25,9.66,5.63,4 +144,1,1,30,1,5,1,1,2,158,67,20.28,3.66,-0 +145,1,1,31,2,1,2,1,1,64,64.14,26.21,1.67,-2.86 +146,1,1,31,2,2,2,1,2,438,60.25,28.57,-0.48,-6.75 +147,1,1,31,2,3,2,1,2,256,57,11.67,-0.01,-3 +148,1,1,31,2,4,2,1,2,447,57.25,20.11,-0.48,-5 +149,1,1,31,2,5,2,1,3,296,60.4,11.91,0.84,-2 +150,1,2,1,3,1,2,1,2,40,76.17,3.76,-0.79,-2.33 +151,1,2,1,3,2,2,1,3,350,93,0,-0.48,-1 +152,1,2,1,3,3,2,1,2,212,84.5,2.42,1.4,0.75 +153,1,2,1,3,4,2,1,2,460,76.5,6.44,3.28,1.75 +154,1,2,1,3,5,2,1,2,298,87,14.8,2.34,-0.8 +155,1,2,2,4,1,2,1,3,32,93,16.32,2.34,-0.71 +156,1,2,2,4,2,2,1,3,388,94.75,14.49,2.57,-0.25 +157,1,2,2,4,3,2,1,2,254,90.25,26.15,6.1,3.5 +158,1,2,2,4,4,2,1,1,551,60.5,45.87,8.92,6 +159,1,2,2,4,5,2,1,1,301,45.6,44.74,2.9,-2.6 +160,1,2,3,5,1,2,1,1,61,43.83,38.36,0.46,-5.83 +161,1,2,3,5,2,2,1,1,460,47.5,35.41,-0.71,-7.25 +162,1,2,3,5,3,2,1,1,231,40,43.45,1.4,-4.75 +163,1,2,3,5,4,2,1,1,460,38.5,25.35,1.87,-2.5 +164,1,2,3,5,5,2,1,1,338,48,8.37,1.02,-1 +165,1,2,4,6,1,2,1,2,57,57.83,6.17,-0.64,-2.83 +166,1,2,4,6,2,2,1,1,485,66,10.86,-0.48,-3.5 +167,1,2,4,6,3,2,1,2,323,48.5,19.31,3.75,0.5 +168,1,2,4,6,4,2,1,2,549,51.5,19.31,4.69,2 +169,1,2,4,6,5,2,1,2,294,67,16.42,3.28,-0 +170,1,2,5,7,1,1,1,2,106,82.57,13.57,2.61,-0.14 +171,1,2,5,7,2,1,1,3,68,98.25,10.87,1.64,-0.75 +172,1,2,5,7,3,1,1,3,226,100,12.47,2.34,-0.25 +173,1,2,5,7,4,1,1,3,292,98.25,23.34,3.28,-0.25 +174,1,2,5,7,5,1,1,1,313,93.2,27.04,4.78,1.4 +175,1,2,6,1,1,1,1,1,120,62.14,28.28,4.22,0.43 +176,1,2,6,1,2,1,1,1,165,59.5,16.9,4.46,1.75 +177,1,2,6,1,3,1,1,1,634,46.75,9.25,7.74,6.25 +178,1,2,6,1,4,1,1,1,538,49.25,9.66,7.51,6.5 +179,1,2,6,1,5,1,1,1,166,61.4,5.15,4.41,3.4 +180,1,2,7,2,1,2,1,1,66,81.57,0,1.67,1.29 +181,1,2,7,2,2,2,1,1,498,85.25,2.82,1.4,0.5 +182,1,2,7,2,3,2,1,2,237,60.25,7.25,7.74,7 +183,1,2,7,2,4,2,1,2,555,61.75,14.08,8.45,7 +184,1,2,7,2,5,2,1,2,356,74.4,4.19,6.48,6 +185,1,2,8,3,1,2,1,2,61,86.29,16.79,4.62,1.86 +186,1,2,8,3,2,2,1,1,526,55,52.7,3.04,-3.25 +187,1,2,8,3,3,2,1,1,229,38.5,49.09,2.81,-3.25 +188,1,2,8,3,4,2,1,1,462,33.5,50.7,2.1,-3.75 +189,1,2,8,3,5,2,1,1,252,35.8,41.85,-1.42,-8.4 +190,1,2,9,4,1,2,1,1,79,40.83,19.85,-4.4,-9.5 +191,1,2,9,4,2,2,1,1,480,41.5,7.24,-3.06,-6.75 +192,1,2,9,4,3,2,1,2,229,39.25,25.35,0.22,-4.75 +193,1,2,9,4,4,2,1,2,479,38,29.37,1.17,-3.75 +194,1,2,9,4,5,2,1,3,338,83.6,20.28,-1.04,-6.2 +195,1,2,10,5,1,2,1,3,59,68.17,21.46,-1.73,-7 +196,1,2,10,5,2,2,1,1,434,45.75,37.82,-2.83,-10 +197,1,2,10,5,3,2,1,1,224,32.25,35.81,-0.01,-6 +198,1,2,10,5,4,2,1,1,455,26.5,23.74,0.7,-3.75 +199,1,2,10,5,5,2,1,1,366,35.8,6.44,-1.8,-4 +200,1,2,11,6,1,2,1,1,52,57.6,8.05,-3.49,-6.6 +201,1,2,11,6,2,2,1,1,474,72.5,15.69,-2.83,-7 +202,1,2,11,6,3,2,1,1,329,38.75,19.31,3.51,0 +203,1,2,11,6,4,2,1,1,584,25.25,9.66,6.1,4.75 +204,1,2,11,6,5,2,1,1,307,56,7.72,1.96,-0 +205,1,2,12,7,1,1,1,1,86,79.43,7.13,-1.82,-3.86 +206,1,2,12,7,2,1,1,1,168,67.75,16.9,-0.48,-4.5 +207,1,2,12,7,3,1,1,1,489,34.25,40.24,6.57,2.75 +208,1,2,12,7,4,1,1,1,520,31.75,45.46,7.04,3 +209,1,2,12,7,5,1,1,1,209,43,13.2,3.84,1.4 +210,1,2,13,1,1,1,1,2,102,67.5,12.34,1.4,-1.33 +211,1,2,13,1,2,1,1,2,167,56,20.12,3.51,0.5 +212,1,2,13,1,3,1,1,1,579,32.5,45.46,9.16,7.25 +213,1,2,13,1,4,1,1,2,516,29.5,33.8,11.27,11.5 +214,1,2,13,1,5,1,1,1,225,35,35.08,10.8,11 +215,1,2,14,2,1,2,1,1,53,44.57,32.42,8.38,6.14 +216,1,2,14,2,2,2,1,1,539,39,37.02,10.33,9.5 +217,1,2,14,2,3,2,1,1,389,19.75,42.65,18.56,19.75 +218,1,2,14,2,4,2,1,1,656,30.25,63.16,14.8,15.25 +219,1,2,14,2,5,2,1,1,276,46.8,56.65,8.54,5.2 +220,1,2,15,3,1,2,1,1,62,38.83,57.4,3.91,-1.83 +221,1,2,15,3,2,2,1,1,490,30,39.03,2.1,-3.25 +222,1,2,15,3,3,2,1,1,289,22.25,25.75,6.1,2.75 +223,1,2,15,3,4,2,1,1,601,20.5,20.92,7.28,4.75 +224,1,2,15,3,5,2,1,1,373,39.8,7.08,3.66,2.4 +225,1,2,16,4,1,2,1,1,64,47.5,17.7,1.56,-2 +226,1,2,16,4,2,2,1,2,531,50.75,28.57,2.81,-1.75 +227,1,2,16,4,3,2,1,1,327,31,37.82,10.8,10 +228,1,2,16,4,4,2,1,1,716,31.75,35.41,12.91,13.25 +229,1,2,16,4,5,2,1,1,477,47,22.21,8.92,7.6 +230,1,2,17,5,1,2,1,1,96,57.86,19.31,7.44,5.28 +231,1,2,17,5,2,2,1,1,678,56.25,15.69,8.21,7.25 +232,1,2,17,5,3,2,1,1,395,37.5,24.95,16.21,17.75 +233,1,2,17,5,4,2,1,2,748,34.25,30.58,18.79,20.25 +234,1,2,17,5,5,2,1,1,558,59,35.09,14.94,15.4 +235,1,2,18,6,1,2,1,1,113,69.86,24.14,13.08,13.43 +236,1,2,18,6,2,2,1,2,652,75.75,22.53,11.97,12.25 +237,1,2,18,6,3,2,1,1,665,52.5,22.93,17.85,19.75 +238,1,2,18,6,4,2,1,1,955,34.75,35.01,22.78,25 +239,1,2,18,6,5,2,1,1,542,19.8,38.94,18.88,21 +240,1,2,19,7,1,1,1,1,96,14.29,41.15,12.14,12.43 +241,1,2,19,7,2,1,1,1,228,16.5,63.17,10.56,10.75 +242,1,2,19,7,3,1,1,1,593,16.25,63.16,12.91,13.25 +243,1,2,19,7,4,1,1,1,506,19,65.98,11.5,10.75 +244,1,2,19,7,5,1,1,1,212,28.8,51.18,6.66,2 +245,1,2,20,1,1,1,1,1,71,42,51.5,2.81,-3.33 +246,1,2,20,1,2,1,1,1,185,47.5,22.53,2.1,-1.75 +247,1,2,20,1,3,1,1,1,753,30.5,11.67,7.27,5.5 +248,1,2,20,1,4,1,1,1,562,31.25,12.88,8.45,7.25 +249,1,2,20,1,5,1,1,2,241,49.8,11.27,7.23,5.8 +250,1,2,21,2,1,1,2,2,71,39.29,26.9,8.38,5.86 +251,1,2,21,2,2,1,2,2,220,49.25,30.18,8.21,6 +252,1,2,21,2,3,1,2,2,402,70,23.74,6.8,4.25 +253,1,2,21,2,4,1,2,2,289,76.75,43.45,4.93,0.25 +254,1,2,21,2,5,1,2,3,125,78.6,43.78,2.34,-3.4 +255,1,2,22,3,1,2,1,2,7,80,30.58,-2.36,-8 +256,1,2,22,3,2,2,1,2,304,75.75,21.32,-1.65,-7 +257,1,2,22,3,3,2,1,1,218,58.25,12.47,1.4,-1 +258,1,2,22,3,4,2,1,1,518,49.25,19.31,2.57,-1.25 +259,1,2,22,3,5,2,1,1,403,45.4,27.36,0.65,-4.4 +260,1,2,23,4,1,2,1,1,57,49.33,15.56,-2.05,-6.33 +261,1,2,23,4,2,2,1,1,521,49.75,10.46,-0.48,-3.25 +262,1,2,23,4,3,2,1,1,301,33.25,10.46,5.16,3.75 +263,1,2,23,4,4,2,1,1,597,25.25,7.25,7.75,7 +264,1,2,23,4,5,2,1,1,441,48.8,5.47,3.66,2.6 +265,1,2,24,5,1,2,1,1,86,63.5,13.14,1.71,-1 +266,1,2,24,5,2,2,1,1,550,71.75,26.96,3.04,-1.5 +267,1,2,24,5,3,2,1,2,331,53.5,36.21,9.16,7.5 +268,1,2,24,5,4,2,1,3,448,67.25,32.19,9.39,8 +269,1,2,24,5,5,2,1,2,392,90.6,32.19,7.79,4.2 +270,1,2,25,6,1,2,1,2,41,95.33,5.37,7.2,6.67 +271,1,2,25,6,2,2,1,3,271,95,25.75,9.15,7.25 +272,1,2,25,6,3,2,1,3,342,63.25,53.51,17.38,18 +273,1,2,25,6,4,2,1,1,503,47,67.59,8.69,5.5 +274,1,2,25,6,5,2,1,1,304,49,47.96,5.16,0.2 +275,1,2,26,7,1,1,1,1,94,57.57,18.16,2.61,-0.57 +276,1,2,26,7,2,1,1,2,238,56.25,10.46,3.98,2.25 +277,1,2,26,7,3,1,1,2,671,42,20.12,7.28,5 +278,1,2,26,7,4,1,1,1,656,43.75,26.55,8.68,6.25 +279,1,2,26,7,5,1,1,1,310,64,25.43,5.72,2.6 +280,1,2,27,1,1,1,1,1,109,87,15.02,3.91,1.5 +281,1,2,27,1,2,1,1,1,211,85.5,10.46,4.69,3 +282,1,2,27,1,3,1,1,1,859,52.5,8.45,11.04,10.75 +283,1,2,27,1,4,1,1,1,843,49,18.51,12.68,13 +284,1,2,27,1,5,1,1,1,380,58.8,14.16,10.05,9.8 +285,1,2,28,2,1,2,1,2,72,87,15.77,7.98,6.4 +286,1,2,28,2,2,2,1,2,581,85,31.78,11.27,10.25 +287,1,2,28,2,3,2,1,2,180,80.5,30.18,15.5,16 +288,1,2,28,2,4,2,1,3,287,98.5,24.94,11.98,12.25 +289,1,2,28,2,5,2,1,3,326,87.4,52.14,10.05,8.6 +290,1,3,1,3,1,2,1,1,65,66.57,35.87,3.01,-1.86 +291,1,3,1,3,2,2,1,1,513,56.25,38.22,2.1,-3.25 +292,1,3,1,3,3,2,1,1,299,39.75,14.08,6.34,4.75 +293,1,3,1,3,4,2,1,1,632,35.25,10.06,7.75,6.75 +294,1,3,1,3,5,2,1,1,342,58.6,11.91,4.6,2.8 +295,1,3,2,4,1,2,1,1,64,67.86,22.3,2.21,-1.57 +296,1,3,2,4,2,2,1,1,590,58.5,30.18,4.46,0.25 +297,1,3,2,4,3,2,1,1,376,36,22.13,12.68,12 +298,1,3,2,4,4,2,1,1,718,21,41.04,15.97,16.5 +299,1,3,2,4,5,2,1,1,386,28.4,53.43,7.6,3.8 +300,1,3,3,5,1,2,1,1,62,30.14,45.29,0.86,-5.71 +301,1,3,3,5,2,2,1,1,532,36.75,32.19,-0.95,-7.25 +302,1,3,3,5,3,2,1,1,280,25,11.27,2.34,0 +303,1,3,3,5,4,2,1,1,508,25.75,8.85,3.75,2.25 +304,1,3,3,5,5,2,1,1,303,40.6,11.59,1.02,-1.4 +305,1,3,4,6,1,2,1,2,56,68.43,19.31,0.33,-3.86 +306,1,3,4,6,2,2,1,1,527,68.5,17.7,1.4,-2.25 +307,1,3,4,6,3,2,1,1,368,44.25,24.14,7.28,4.25 +308,1,3,4,6,4,2,1,1,639,47.25,28.16,8.68,5.75 +309,1,3,4,6,5,2,1,2,354,69.2,22.21,6.29,3.4 +310,1,3,5,7,1,1,1,2,74,89.86,17.24,5.97,3.57 +311,1,3,5,7,2,1,1,2,226,96.5,27.36,6.81,3.5 +312,1,3,5,7,3,1,1,2,714,67.25,28.16,12.91,13.25 +313,1,3,5,7,4,1,1,2,725,60,34.6,14.32,14.75 +314,1,3,5,7,5,1,1,2,338,74,34.12,12.68,13 +315,1,3,6,1,1,1,1,2,139,83.33,34.87,11.58,11.83 +316,1,3,6,1,2,1,1,2,67,100,35.81,11.5,11.75 +317,1,3,6,1,3,1,1,2,285,97,30.58,12.92,13.25 +318,1,3,6,1,4,1,1,3,66,100,31.38,9.15,6.5 +319,1,3,6,1,5,1,1,3,48,98.6,50.21,3.84,-1.8 +320,1,3,7,2,1,2,1,1,43,85,45.06,1.4,-4.67 +321,1,3,7,2,2,2,1,1,494,68.5,42.25,2.1,-3.75 +322,1,3,7,2,3,2,1,1,303,40.5,45.06,6.1,1.5 +323,1,3,7,2,4,2,1,1,684,30.5,35.81,7.75,4 +324,1,3,7,2,5,2,1,1,348,40,16.74,5.35,3 +325,1,3,8,3,1,2,1,1,79,56.57,8.51,2.74,0.86 +326,1,3,8,3,2,2,1,1,607,48.25,18.51,3.28,0 +327,1,3,8,3,3,2,1,2,347,23.25,7.24,9.39,9 +328,1,3,8,3,4,2,1,1,703,24.75,15.69,8.92,8 +329,1,3,8,3,5,2,1,1,397,45.8,17.38,6.48,4.2 +330,1,3,9,4,1,2,1,1,77,68.57,12.19,3.68,1.43 +331,1,3,9,4,2,2,1,2,588,84,21.72,4.22,0.75 +332,1,3,9,4,3,2,1,2,327,76,35,7.28,3.5 +333,1,3,9,4,4,2,1,2,573,74.75,31.78,8.21,4.75 +334,1,3,9,4,5,2,1,2,326,88.4,26.07,7.42,4.8 +335,1,3,10,5,1,2,1,3,21,0,27.68,8.36,5.6 +336,1,3,10,5,2,2,1,3,122,0,24.14,10.33,10.5 +337,1,3,10,5,3,2,1,3,69,0,26.96,11.74,12 +338,1,3,10,5,4,2,1,3,228,0,32.99,12.44,12.75 +339,1,3,10,5,5,2,1,3,183,0,29.29,9.3,7.8 +340,1,3,11,6,1,2,1,3,60,92.5,16.1,6.88,5 +341,1,3,11,6,2,2,1,1,607,64.5,27.76,5.63,2.5 +342,1,3,11,6,3,2,1,2,388,53.25,31.38,8.21,5.25 +343,1,3,11,6,4,2,1,2,574,50,29.77,7.75,4.5 +344,1,3,11,6,5,2,1,1,348,53.6,25.11,6.1,3.2 +345,1,3,12,7,1,1,1,1,80,66.29,22.76,3.15,-0.71 +346,1,3,12,7,2,1,1,1,276,66.5,18.51,4.93,1.75 +347,1,3,12,7,3,1,1,1,600,50.75,38.22,8.92,6.5 +348,1,3,12,7,4,1,1,1,784,45.75,38.63,12.68,13 +349,1,3,12,7,5,1,1,1,392,62.2,6.12,10.24,10.4 +350,1,3,13,1,1,1,1,1,112,66.33,12.07,8.61,7.33 +351,1,3,13,1,2,1,1,1,210,52.25,31.38,10.56,10.25 +352,1,3,13,1,3,1,1,1,846,39.5,40.24,13.39,13.75 +353,1,3,13,1,4,1,1,1,948,41,38.63,12.91,13.25 +354,1,3,13,1,5,1,1,1,301,56.8,31.54,6.48,3.2 +355,1,3,14,2,1,2,1,1,52,65.83,12.34,4.06,2 +356,1,3,14,2,2,2,1,2,553,53,19.31,6.57,4.5 +357,1,3,14,2,3,2,1,1,319,36.75,15.69,9.62,9 +358,1,3,14,2,4,2,1,1,714,38,15.29,9.86,9.75 +359,1,3,14,2,5,2,1,1,408,47.4,12.87,7.79,6.2 +360,1,3,15,3,1,2,1,1,75,67.83,11.8,4.69,2.33 +361,1,3,15,3,2,2,1,1,636,70.25,12.07,5.16,3.5 +362,1,3,15,3,3,2,1,2,365,52.5,27.76,8.92,7 +363,1,3,15,3,4,2,1,2,646,53.25,29.77,9.39,8.25 +364,1,3,15,3,5,2,1,2,334,79.4,21.57,7.42,5.2 +365,1,3,16,4,1,2,1,2,49,95.33,20.65,5.94,3.5 +366,1,3,16,4,2,2,1,2,586,90,13.28,7.27,5.25 +367,1,3,16,4,3,2,1,2,362,76,16.09,10.33,10 +368,1,3,16,4,4,2,1,2,742,65,25.35,11.74,12 +369,1,3,16,4,5,2,1,2,453,58,32.19,11.55,11.8 +370,1,3,17,5,1,2,1,1,112,71,22.07,8.11,6.28 +371,1,3,17,5,2,2,1,1,702,64.5,22.93,9.86,9.25 +372,1,3,17,5,3,2,1,1,421,46.5,18.91,15.03,15.5 +373,1,3,17,5,4,2,1,1,890,47.75,24.14,15.27,15.75 +374,1,3,17,5,5,2,1,1,619,63,24.78,11.74,12 +375,1,3,18,6,1,2,1,1,110,64.17,23.07,10.49,10.33 +376,1,3,18,6,2,2,1,1,730,62.25,25.75,13.15,13.5 +377,1,3,18,6,3,2,1,1,703,45.25,31.78,20.2,21.75 +378,1,3,18,6,4,2,1,1,1040,38.5,30.58,24.2,26 +379,1,3,18,6,5,2,1,1,656,47.8,16.42,21.33,25 +380,1,3,19,7,1,1,1,2,175,41.86,37.24,17.25,18.43 +381,1,3,19,7,2,1,1,1,277,44.75,45.87,11.74,12 +382,1,3,19,7,3,1,1,1,1076,33.5,49.09,14.56,15 +383,1,3,19,7,4,1,1,1,1112,30.5,39.43,14.8,15.25 +384,1,3,19,7,5,1,1,1,477,36.4,30.9,11.18,11.4 +385,1,3,20,1,1,1,1,1,122,55.14,30.12,5.56,2.14 +386,1,3,20,1,2,1,1,1,265,53.25,14.08,5.4,3 +387,1,3,20,1,3,1,1,1,913,35.75,5.63,9.39,9 +388,1,3,20,1,4,1,1,1,914,34.75,19.72,10.8,11 +389,1,3,20,1,5,1,1,1,257,51.2,33.8,8.36,5 +390,2,3,21,2,1,2,1,2,61,72.67,35.68,7.67,4 +391,2,3,21,2,2,2,1,2,305,82.75,41.84,7.51,4.5 +392,2,3,21,2,3,2,1,2,373,68.75,26.96,14.33,14.75 +393,2,3,21,2,4,2,1,2,796,65,26.55,17.38,18 +394,2,3,21,2,5,2,1,1,542,78.8,24.14,15.69,16.2 +395,2,3,22,3,1,2,1,1,109,88.57,18.39,12.01,12.28 +396,2,3,22,3,2,2,1,2,774,61.5,31.38,11.27,11.5 +397,2,3,22,3,3,2,1,1,414,46.25,30.58,14.32,14.75 +398,2,3,22,3,4,2,1,1,918,42.5,14.08,15.27,15.75 +399,2,3,22,3,5,2,1,2,488,55.6,30.25,11.74,12 +400,2,3,23,4,1,2,1,3,77,78.83,24.68,7.98,5.33 +401,2,3,23,4,2,2,1,2,636,85.5,25.75,7.28,4.5 +402,2,3,23,4,3,2,1,2,350,87,17.7,8.21,6.25 +403,2,3,23,4,4,2,1,2,732,79,24.95,10.33,10.5 +404,2,3,23,4,5,2,1,3,326,90.4,31.86,7.98,5.6 +405,2,3,24,5,1,2,1,2,72,97,23.68,5.7,2.57 +406,2,3,24,5,2,2,1,3,394,96.5,28.97,4.22,0 +407,2,3,24,5,3,2,1,2,349,72.75,26.55,6.34,3 +408,2,3,24,5,4,2,1,2,621,66.5,26.96,6.1,2.75 +409,2,3,24,5,5,2,1,1,429,62.4,27.04,4.6,0.8 +410,2,3,25,6,1,2,1,1,76,69.86,18.16,1.27,-2.29 +411,2,3,25,6,2,2,1,1,575,51.5,25.35,2.81,-1.75 +412,2,3,25,6,3,2,1,1,491,39.5,28.57,7.27,4.5 +413,2,3,25,6,4,2,1,2,695,36.25,31.38,7.28,3.75 +414,2,3,25,6,5,2,1,2,373,38,25.75,5.54,2.4 +415,2,3,26,7,1,1,1,1,113,45.29,24.83,2.34,-2.14 +416,2,3,26,7,2,1,1,1,332,44.25,16.9,2.81,-0.75 +417,2,3,26,7,3,1,1,1,850,34,21.73,6.57,3.5 +418,2,3,26,7,4,1,1,1,823,24.25,20.92,7.51,5.25 +419,2,3,26,7,5,1,1,2,378,43.8,26.07,4.78,1.4 +420,2,3,27,1,1,1,1,3,94,62.83,19.31,1.87,-1.83 +421,2,3,27,1,2,1,1,1,161,66.25,20.12,1.4,-2.75 +422,2,3,27,1,3,1,1,2,582,41.75,20.92,5.16,2.25 +423,2,3,27,1,4,1,1,1,611,33.5,19.71,7.04,4.25 +424,2,3,27,1,5,1,1,1,245,38.6,19.64,4.78,1.6 +425,2,3,28,2,1,2,1,1,73,44,21.46,1.71,-2.17 +426,2,3,28,2,2,2,1,1,554,32,26.15,2.1,-2.5 +427,2,3,28,2,3,2,1,2,299,25.25,19.72,5.4,2.25 +428,2,3,28,2,4,2,1,1,697,22.75,29.37,7.51,4.25 +429,2,3,28,2,5,2,1,1,405,22.2,19.31,6.29,4 +430,2,3,29,3,1,2,1,1,86,35.14,29.89,2.88,-1.86 +431,2,3,29,3,2,2,1,1,651,32,37.82,4.22,-0.5 +432,2,3,29,3,3,2,1,1,377,25,29.77,8.21,5 +433,2,3,29,3,4,2,1,1,816,22,16.5,9.86,9.75 +434,2,3,29,3,5,2,1,1,495,38.4,8.37,7.98,7.2 +435,2,3,30,4,1,2,1,2,85,52,5.06,6.77,6 +436,2,3,30,4,2,2,1,2,617,46.25,19.31,7.28,5 +437,2,3,30,4,3,2,1,2,348,46,25.35,8.45,6 +438,2,3,30,4,4,2,1,3,307,88.5,23.74,4.69,1.5 +439,2,3,30,4,5,2,1,3,179,93,27.68,3.47,-1 +440,2,3,31,5,1,2,1,3,60,93,24.83,3.28,-1.14 +441,2,3,31,5,2,2,1,3,485,94.75,27.36,3.75,-0.5 +442,2,3,31,5,3,2,1,3,292,90,17.7,5.63,3 +443,2,3,31,5,4,2,1,2,495,87,25.34,6.1,3 +444,2,3,31,5,5,2,1,3,353,93.2,21.57,5.16,2 +445,2,4,1,6,1,2,1,3,64,95,22.76,3.68,-0.14 +446,2,4,1,6,2,2,1,1,549,79,24.14,5.4,1.75 +447,2,4,1,6,3,2,1,1,381,52.5,38.62,8.21,4.75 +448,2,4,1,6,4,2,1,1,800,46,40.24,7.98,4 +449,2,4,1,6,5,2,1,1,433,54.4,19.64,6.85,4.8 +450,2,4,2,7,1,1,1,1,116,69.43,13.34,3.95,1.43 +451,2,4,2,7,2,1,1,2,314,65.75,12.88,6.8,5.25 +452,2,4,2,7,3,1,1,3,709,71.25,20.52,8.22,6.75 +453,2,4,2,7,4,1,1,1,695,61.5,34.2,9.39,8.5 +454,2,4,2,7,5,1,1,1,418,57.8,29.29,7.6,4.8 +455,2,4,3,1,1,1,1,1,149,65.29,14.48,5.43,3.43 +456,2,4,3,1,2,1,1,1,452,51.75,35,8.68,6.5 +457,2,4,3,1,3,1,1,1,1272,35.75,26.15,12.68,13 +458,2,4,3,1,4,1,1,2,1041,30.75,8.85,13.62,14 +459,2,4,3,1,5,1,1,2,335,44.4,18.03,11.36,11.6 +460,2,4,4,2,1,2,1,1,75,61.29,30.12,10.53,10.71 +461,2,4,4,2,2,2,1,2,744,51.25,35,14.8,15.25 +462,2,4,4,2,3,2,1,1,543,34.25,45.06,23.26,25.75 +463,2,4,4,2,4,2,1,1,1084,22.75,58.74,27.02,27 +464,2,4,4,2,5,2,1,2,669,32.2,46.35,24.15,25.8 +465,2,4,5,3,1,2,1,3,91,74.71,35.41,17.25,18.71 +466,2,4,5,3,2,2,1,3,365,85.75,48.28,10.33,8.5 +467,2,4,5,3,3,2,1,2,189,68,47.07,8.21,4.5 +468,2,4,5,3,4,2,1,1,738,42.5,48.28,10.56,10.75 +469,2,4,5,3,5,2,1,1,412,46.6,36.37,7.6,4.2 +470,2,4,6,4,1,2,1,1,96,63.43,13.1,3.95,1.57 +471,2,4,6,4,2,2,1,1,692,52.25,26.15,7.74,5.75 +472,2,4,6,4,3,2,1,1,454,37.75,41.84,13.38,13.75 +473,2,4,6,4,4,2,1,1,967,30.25,41.84,16.68,17.25 +474,2,4,6,4,5,2,1,1,599,41,29.93,14,14.4 +475,2,4,7,5,1,2,1,1,114,63,19.77,9.86,8.57 +476,2,4,7,5,2,2,1,2,739,71.25,16.09,9.86,9 +477,2,4,7,5,3,2,1,2,567,50.25,4.83,15.5,16 +478,2,4,7,5,4,2,1,1,1049,45,17.3,17.85,20.5 +479,2,4,7,5,5,2,1,1,672,68,25.75,11.93,12.2 +480,2,4,8,6,1,2,1,2,93,80.57,15.63,7.98,6.28 +481,2,4,8,6,2,2,1,3,592,80.25,21.73,8.45,6.25 +482,2,4,8,6,3,2,1,3,235,72.75,30.18,9.39,8 +483,2,4,8,6,4,2,1,3,295,91.5,26.55,7.28,4.25 +484,2,4,8,6,5,2,1,2,256,93,32.83,6.1,2.4 +485,2,4,9,7,1,1,1,2,103,92.43,23.22,6.23,3.14 +486,2,4,9,7,2,1,1,2,306,90,15.29,7.28,5.25 +487,2,4,9,7,3,1,1,2,778,81,7.24,8.92,7.75 +488,2,4,9,7,4,1,1,2,826,83.25,5.23,9.62,9.75 +489,2,4,9,7,5,1,1,2,442,88.4,14.16,9.48,8.8 +490,2,4,10,1,1,1,1,2,155,89.57,11.27,9.46,9.14 +491,2,4,10,1,2,1,1,2,296,93.75,8.45,9.86,9.75 +492,2,4,10,1,3,1,1,2,976,82.25,15.29,12.91,13.25 +493,2,4,10,1,4,1,1,2,1061,74.5,20.92,15.97,16.5 +494,2,4,10,1,5,1,1,1,407,85.8,24.46,13.62,14 +495,2,4,11,2,1,2,1,1,111,94,27.09,13.78,14.16 +496,2,4,11,2,2,2,1,2,751,85.5,29.37,17.15,17.75 +497,2,4,11,2,3,2,1,2,522,67.25,37.82,22.08,24.5 +498,2,4,11,2,4,2,1,1,1211,48.75,52.71,26.55,28 +499,2,4,11,2,5,2,1,1,753,55.8,32.51,22.83,24.8 +500,2,4,12,3,1,2,1,2,132,58.43,15.63,19.26,21.43 +501,2,4,12,3,2,2,1,3,509,83,41.04,15.27,15.75 +502,2,4,12,3,3,2,1,2,291,72.75,37.42,16.91,17.5 +503,2,4,12,3,4,2,1,2,692,77,36.62,13.62,14 +504,2,4,12,3,5,2,1,2,410,86.8,28.32,11.36,11.6 +505,2,4,13,4,1,2,1,3,62,96.57,31.27,10.53,10.71 +506,2,4,13,4,2,2,1,3,345,93.75,22.53,9.86,9.5 +507,2,4,13,4,3,2,1,2,323,79.5,24.14,11.97,12.25 +508,2,4,13,4,4,2,1,1,853,67,33.8,13.15,13.5 +509,2,4,13,4,5,2,1,1,579,65.8,21.56,11.93,12.2 +510,2,4,14,5,1,2,1,1,129,76.71,12.64,8.65,7.86 +511,2,4,14,5,2,2,1,1,789,56.5,13.28,12.68,13 +512,2,4,14,5,3,2,1,1,556,39.75,16.5,17.62,18.25 +513,2,4,14,5,4,2,1,1,1069,28.75,5.23,19.73,23 +514,2,4,14,5,5,2,1,1,724,52,11.59,14.94,15.4 +515,2,4,15,6,1,1,2,1,126,75,4.37,10.67,10.57 +516,2,4,15,6,2,1,2,1,749,60.75,22.93,13.62,14 +517,2,4,15,6,3,1,2,1,679,53.5,26.55,16.91,17.5 +518,2,4,15,6,4,1,2,1,999,59.25,46.27,15.74,16.25 +519,2,4,15,6,5,1,2,2,573,78.4,34.44,10.42,10.2 +520,2,4,16,7,1,1,1,2,133,85.43,25.29,9.32,7.86 +521,2,4,16,7,2,1,1,3,117,90.75,39.43,11.04,11.25 +522,2,4,16,7,3,1,1,3,184,89.75,57.54,13.86,14.25 +523,2,4,16,7,4,1,1,3,164,88.25,54.32,15.73,16.25 +524,2,4,16,7,5,1,1,2,197,91.8,19.96,13.24,13.6 +525,2,4,17,1,1,1,1,1,136,69.29,23.91,10.4,9.57 +526,2,4,17,1,2,1,1,1,372,45.75,39.83,10.33,9.75 +527,2,4,17,1,3,1,1,1,1362,36.75,42.65,14.8,15.25 +528,2,4,17,1,4,1,1,1,1314,30.5,46.27,17.85,18.5 +529,2,4,17,1,5,1,1,1,560,42.8,20.6,15.69,16.2 +530,2,4,18,2,1,2,1,1,157,66.86,10.58,11.87,12.14 +531,2,4,18,2,2,2,1,1,743,59,5.63,14.8,15.25 +532,2,4,18,2,3,2,1,2,620,49.75,14.49,18.32,19 +533,2,4,18,2,4,2,1,1,1171,42.25,30.18,20.43,23.75 +534,2,4,18,2,5,2,1,1,738,46,29.61,17.76,19.2 +535,2,4,19,3,1,2,1,1,136,64.86,19.08,14.16,14.57 +536,2,4,19,3,2,2,1,2,776,64.5,12.07,15.97,16.5 +537,2,4,19,3,3,2,1,2,411,66,18.11,17.38,18 +538,2,4,19,3,4,2,1,1,1151,60.25,18.91,17.85,18.5 +539,2,4,19,3,5,2,1,2,730,76.2,15.77,14.94,15.4 +540,2,4,20,4,1,2,1,1,132,94,14.25,11.61,11.86 +541,2,4,20,4,2,2,1,1,961,73.25,22.53,19.5,21.5 +542,2,4,20,4,3,2,1,1,588,51.25,35.81,24.43,26.25 +543,2,4,20,4,4,2,1,2,1273,34.25,40.23,27.25,27.5 +544,2,4,20,4,5,2,1,1,990,36.2,26.39,22.64,25.2 +545,2,4,21,5,1,2,1,2,185,49.57,46.44,14.16,14.57 +546,2,4,21,5,2,2,1,2,857,47,43.05,11.5,11.75 +547,2,4,21,5,3,2,1,1,737,36.5,31.39,14.09,14.5 +548,2,4,21,5,4,2,1,1,1462,27.5,32.99,15.97,16.5 +549,2,4,21,5,5,2,1,1,948,37.2,17.38,12.12,12.4 +550,2,4,22,6,1,2,1,1,136,54.29,28.28,8.52,5.71 +551,2,4,22,6,2,2,1,2,857,57.25,27.76,8.21,5.25 +552,2,4,22,6,3,2,1,3,262,79,20.92,7.98,5.75 +553,2,4,22,6,4,2,1,3,257,90,20.92,7.51,5 +554,2,4,22,6,5,2,1,3,171,93.2,18.35,6.66,4.4 +555,2,4,23,7,1,1,1,3,78,100,11.95,7.44,6.28 +556,2,4,23,7,2,1,1,2,263,95.5,25.35,9.62,8.5 +557,2,4,23,7,3,1,1,1,1226,83,37.42,16.44,17 +558,2,4,23,7,4,1,1,1,1582,74.25,32.19,19.96,22.25 +559,2,4,23,7,5,1,1,2,887,84,26.71,18.13,18.8 +560,2,4,24,1,1,1,1,1,276,91.57,13.57,15.63,16.14 +561,2,4,24,1,2,1,1,1,573,90,17.3,17.62,18.5 +562,2,4,24,1,3,1,1,1,1566,60.5,26.96,24.2,26.25 +563,2,4,24,1,4,1,1,1,1329,60.75,29.77,23.73,25.5 +564,2,4,24,1,5,1,1,3,447,92,21.25,18.51,19.2 +565,2,4,25,2,1,2,1,2,130,100,4.37,16.04,16.57 +566,2,4,25,2,2,2,1,1,848,86,14.89,19.26,20.25 +567,2,4,25,2,3,2,1,1,684,66.5,24.95,23.96,26 +568,2,4,25,2,4,2,1,1,1434,54,33.39,25.13,27 +569,2,4,25,2,5,2,1,1,977,67.6,31.22,21.33,23.4 +570,2,4,26,3,1,2,1,1,197,81.71,29.43,18.86,20 +571,2,4,26,3,2,2,1,1,1038,77,35.4,20.91,22.25 +572,2,4,26,3,3,2,1,1,689,58.75,42.65,25.37,27.25 +573,2,4,26,3,4,2,1,1,1493,61.25,41.84,24.43,26.5 +574,2,4,26,3,5,2,1,1,983,78,31.86,21.14,22.6 +575,2,4,27,4,1,2,1,1,163,89.14,26.9,19.13,19.86 +576,2,4,27,4,2,2,1,2,963,86.75,35.41,19.96,20.5 +577,2,4,27,4,3,2,1,1,627,77,32.19,22.79,24 +578,2,4,27,4,4,2,1,1,1289,75.25,44.66,23.96,25.5 +579,2,4,27,4,5,2,1,1,830,85,34.12,21.33,21.6 +580,2,4,28,5,1,2,1,2,206,80.86,43.91,21.54,22.43 +581,2,4,28,5,2,2,1,2,850,83,40.64,21.85,22.25 +582,2,4,28,5,3,2,1,2,454,81.75,30.58,21.14,22.25 +583,2,4,28,5,4,2,1,1,1418,60.25,35,22.08,24.5 +584,2,4,28,5,5,2,1,1,1130,43.2,19.64,18.7,20 +585,2,4,29,6,1,2,1,1,196,49.86,17.24,14.56,15 +586,2,4,29,6,2,2,1,1,1047,40,29.77,17.38,18 +587,2,4,29,6,3,2,1,1,936,36.75,30.58,19.26,22 +588,2,4,29,6,4,2,1,2,1498,43.75,37.82,17.14,17.75 +589,2,4,29,6,5,2,1,1,918,53.2,21.57,13.24,13.6 +590,2,4,30,7,1,1,1,2,297,54.57,26.67,12.01,12.28 +591,2,4,30,7,2,1,1,1,574,50.75,38.63,12.21,12.5 +592,2,4,30,7,3,1,1,1,1644,40.5,34.2,16.68,17.25 +593,2,4,30,7,4,1,1,1,1741,40,16.09,18.32,19 +594,2,4,30,7,5,1,1,1,1056,60.2,13.2,13.62,14 +595,2,5,1,1,1,1,1,1,268,76.43,10.58,11.2,11.43 +596,2,5,1,1,2,1,1,2,497,72.25,14.89,13.15,13.5 +597,2,5,1,1,3,1,1,2,1101,72.5,12.88,14.8,15.25 +598,2,5,1,1,4,1,1,2,835,77,14.48,14.8,15.25 +599,2,5,1,1,5,1,1,2,650,81.4,6.44,13.62,14 +600,2,5,2,2,1,2,1,1,441,77.14,15.86,12.95,13.29 +601,2,5,2,2,2,2,1,2,860,78.25,28.57,15.27,15.75 +602,2,5,2,2,3,2,1,1,668,70,25.35,20.91,23 +603,2,5,2,2,4,2,1,1,1479,63,21.72,22.78,24.75 +604,2,5,2,2,5,2,1,2,953,73.4,12.23,20.2,22.6 +605,2,5,3,3,1,2,1,2,164,84.57,23.68,17.38,18 +606,2,5,3,3,2,2,1,2,1037,79.5,32.99,19.5,20.75 +607,2,5,3,3,3,2,1,2,709,60.5,52.71,24.2,26.25 +608,2,5,3,3,4,2,1,1,1486,53.5,48.28,25.13,27.25 +609,2,5,3,3,5,2,1,2,1055,61.4,37.02,21.33,23 +610,2,5,4,4,1,2,1,3,72,86.14,35.41,12.28,11.57 +611,2,5,4,4,2,2,1,3,202,93,37.42,7.98,4.25 +612,2,5,4,4,3,2,1,2,446,63.5,41.04,13.15,13.5 +613,2,5,4,4,4,2,1,1,1130,58.5,37.42,13.15,13.5 +614,2,5,4,4,5,2,1,1,783,61.2,28,10.42,10.2 +615,2,5,5,5,1,2,1,1,172,66.71,25.06,8.11,5.43 +616,2,5,5,5,2,2,1,1,1023,47.75,28.97,12.68,13 +617,2,5,5,5,3,2,1,1,690,32,49.49,16.91,17.5 +618,2,5,5,5,4,2,1,1,1469,25.5,42.65,18.56,19.25 +619,2,5,5,5,5,2,1,1,1079,35.6,20.92,15.31,15.8 +620,2,5,6,6,1,2,1,1,212,67.43,12.88,9.73,9.28 +621,2,5,6,6,2,2,1,1,987,68.75,23.34,13.38,13.75 +622,2,5,6,6,3,2,1,1,877,44.5,39.43,18.79,20.5 +623,2,5,6,6,4,2,1,1,1627,42.5,36.61,19.26,22 +624,2,5,6,6,5,2,1,1,905,64.2,20.6,14.94,15.4 +625,2,5,7,7,1,1,1,1,239,77.29,11.5,11.87,12.14 +626,2,5,7,7,2,1,1,1,671,52.25,20.92,16.68,17.25 +627,2,5,7,7,3,1,1,1,1534,38.25,17.3,19.73,23.5 +628,2,5,7,7,4,1,1,1,1363,38.25,22.53,19.73,22.5 +629,2,5,7,7,5,1,1,1,907,48.6,18.35,17.38,18 +630,2,5,8,1,1,1,1,2,275,70,2.99,13.89,14.28 +631,2,5,8,1,2,1,1,1,513,61.5,13.28,16.91,17.5 +632,2,5,8,1,3,1,1,1,1478,48.25,8.45,19.96,23.75 +633,2,5,8,1,4,1,1,1,1362,48.25,10.46,19.73,22.5 +634,2,5,8,1,5,1,1,1,705,78.8,8.69,16.06,16.6 +635,2,5,9,2,1,2,1,1,217,82.43,11.73,12.68,13 +636,2,5,9,2,2,2,1,1,908,56.5,22.53,16.68,17.25 +637,2,5,9,2,3,2,1,1,656,42,24.95,20.67,25 +638,2,5,9,2,4,2,1,1,1625,38.75,26.96,21.38,25 +639,2,5,9,2,5,2,1,1,956,57.4,15.13,17,17.6 +640,2,5,10,3,1,2,1,1,185,61.29,15.86,12.55,12.86 +641,2,5,10,3,2,2,1,2,1071,49.5,11.67,15.74,16.25 +642,2,5,10,3,3,2,1,2,720,38,10.46,20.2,23.5 +643,2,5,10,3,4,2,1,1,1668,31.5,8.85,22.32,25 +644,2,5,10,3,5,2,1,1,1159,53.8,12.87,17.57,19 +645,2,5,11,4,1,2,1,1,192,70.57,13.33,15.1,15.57 +646,2,5,11,4,2,2,1,1,1117,72.25,18.1,15.74,16.25 +647,2,5,11,4,3,2,1,1,737,55.75,4.83,20.2,23.5 +648,2,5,11,4,4,2,1,1,1001,44.25,10.86,22.08,25 +649,2,5,11,4,5,2,1,1,1135,67.2,16.73,16.44,17 +650,2,5,12,5,1,2,1,1,228,90.57,14.02,12.68,13 +651,2,5,12,5,2,2,1,1,1077,78.75,22.53,15.27,15.75 +652,2,5,12,5,3,2,1,1,795,59.5,26.15,20.2,22.25 +653,2,5,12,5,4,2,1,2,1626,59,24.94,21.85,24.75 +654,2,5,12,5,5,2,1,1,1138,74.2,19.63,18.7,20.6 +655,2,5,13,6,1,2,1,2,199,86.57,16.78,15.77,16.28 +656,2,5,13,6,2,2,1,2,907,86.75,18.51,15.73,16.25 +657,2,5,13,6,3,2,1,2,785,86.5,27.76,16.44,17 +658,2,5,13,6,4,2,1,2,1387,88,16.9,16.44,17 +659,2,5,13,6,5,2,1,2,827,84.2,18.99,16.25,16.8 +660,2,5,14,7,1,1,1,2,301,86.29,14.02,15.5,16 +661,2,5,14,7,2,1,1,3,387,95.5,6.84,15.73,16.25 +662,2,5,14,7,3,1,1,3,1022,97,12.07,16.68,17.25 +663,2,5,14,7,4,1,1,2,1165,91,20.92,17.85,18.5 +664,2,5,14,7,5,1,1,3,534,95.2,18.35,17.19,17.8 +665,2,5,15,1,1,1,1,2,212,100,7.36,16.44,17 +666,2,5,15,1,2,1,1,2,472,90,20.11,18.09,18.75 +667,2,5,15,1,3,1,1,1,1582,74.25,26.96,21.14,23 +668,2,5,15,1,4,1,1,1,1528,73.5,30.17,20.44,21.75 +669,2,5,15,1,5,1,1,1,759,86,7.08,17.76,18.4 +670,2,5,16,2,1,2,1,1,200,94.71,15.17,15.9,16.43 +671,2,5,16,2,2,2,1,1,972,72.5,23.34,19.03,20.75 +672,2,5,16,2,3,2,1,1,801,53.25,2.42,23.26,25.5 +673,2,5,16,2,4,2,1,1,1118,75,18.1,21.14,22.5 +674,2,5,16,2,5,2,1,1,867,85,9.34,18.88,19.6 +675,2,5,17,3,1,2,1,3,131,91.43,15.63,17.51,18.14 +676,2,5,17,3,2,2,1,2,809,91,28.56,16.91,17.5 +677,2,5,17,3,3,2,1,2,639,81.75,43.86,19.03,20 +678,2,5,17,3,4,2,1,1,1584,66,40.24,20.91,23.75 +679,2,5,17,3,5,2,1,1,960,83.2,31.54,18.32,19.4 +680,2,5,18,4,1,2,1,3,163,94,25.52,16.71,17.29 +681,2,5,18,4,2,2,1,1,1035,86.75,27.36,17.85,18.5 +682,2,5,18,4,3,2,1,2,337,87.25,26.96,18.32,19 +683,2,5,18,4,4,2,1,1,1515,73.25,21.72,20.2,22.75 +684,2,5,18,4,5,2,1,1,805,88.2,7.72,17.19,17.8 +685,2,5,19,5,1,2,1,1,188,94.86,1.61,15.23,15.71 +686,2,5,19,5,2,2,1,2,1090,89.75,2.42,16.68,17.25 +687,2,5,19,5,3,2,1,3,695,75.75,19.31,18.32,19 +688,2,5,19,5,4,2,1,1,1550,68.75,18.51,19.03,20.75 +689,2,5,19,5,5,2,1,1,1052,78,21.57,16.82,17.4 +690,2,5,20,6,1,2,1,1,236,95.71,7.36,13.08,13.43 +691,2,5,20,6,2,2,1,1,1218,69.25,15.69,17.15,17.75 +692,2,5,20,6,3,2,1,2,880,56.25,25.75,20.2,23.75 +693,2,5,20,6,4,2,1,2,1599,54.5,14.08,20.43,25 +694,2,5,20,6,5,2,1,1,984,67.4,9.98,18.13,18.8 +695,2,5,21,7,1,1,1,1,269,80.14,10.58,15.23,15.71 +696,2,5,21,7,2,1,1,1,717,66.5,20.12,19.26,21.25 +697,2,5,21,7,3,1,1,1,1829,47.5,3.62,23.96,25.75 +698,2,5,21,7,4,1,1,2,1865,42.75,22.53,25.6,26.75 +699,2,5,21,7,5,1,1,1,1125,63.2,10.62,21.14,23.4 +700,2,5,22,1,1,1,1,1,366,95.71,11.04,16.17,16.71 +701,2,5,22,1,2,1,1,1,628,73.75,11.67,20.2,22.25 +702,2,5,22,1,3,1,1,2,1545,57,21.72,23.72,26 +703,2,5,22,1,4,1,1,1,1268,60.25,20.92,23.73,25.75 +704,2,5,22,1,5,1,1,1,853,73,17.7,21.14,22.6 +705,2,5,23,2,1,2,1,2,170,92.29,8.74,17.78,18.43 +706,2,5,23,2,2,2,1,1,933,86,22.13,20.44,21 +707,2,5,23,2,3,2,1,1,775,64.5,46.27,25.13,27.5 +708,2,5,23,2,4,2,1,2,1337,67,38.22,25.6,28.75 +709,2,5,23,2,5,2,1,1,1059,85.6,23.5,22.27,22.6 +710,2,5,24,3,1,2,1,2,202,93.14,18.62,19.8,19.15 +711,2,5,24,3,2,2,1,3,994,73.75,25.35,22.55,24 +712,2,5,24,3,3,2,1,1,688,47,30.98,27.95,29.25 +713,2,5,24,3,4,2,1,1,1577,63.75,24.54,24.9,27 +714,2,5,24,3,5,2,1,1,1031,77.6,16.42,22.46,23.8 +715,2,5,25,4,1,2,1,1,205,91.71,12.88,18.45,19.14 +716,2,5,25,4,2,2,1,1,1213,67,14.49,23.02,25 +717,2,5,25,4,3,2,1,1,720,54,14.08,26.78,28.75 +718,2,5,25,4,4,2,1,1,1599,53,26.55,26.78,28.5 +719,2,5,25,4,5,2,1,1,1241,66.6,17.7,23.58,25.6 +720,2,5,26,5,1,2,1,1,206,84.71,9.89,20.87,21 +721,2,5,26,5,2,2,1,2,1134,80.25,23.34,23.73,25.25 +722,2,5,26,5,3,2,1,1,740,57.25,30.18,29.13,33.25 +723,2,5,26,5,4,2,1,2,1404,46.75,33.8,29.84,32.75 +724,2,5,26,5,5,2,1,1,1193,59.2,19.64,26.03,28.2 +725,2,5,27,6,1,2,1,1,268,65.14,21.15,23.15,25.14 +726,2,5,27,6,2,2,1,1,1047,66.5,30.18,23.96,26 +727,2,5,27,6,3,2,1,2,857,55.75,28.97,27.25,29.5 +728,2,5,27,6,4,2,1,1,1665,56,36.62,27.25,29.75 +729,2,5,27,6,5,2,1,1,842,80,18.35,20.2,21.6 +730,2,5,28,7,1,1,1,1,242,88.14,22.76,18.72,19.43 +731,2,5,28,7,2,1,1,1,605,74.75,24.94,22.08,23.75 +732,2,5,28,7,3,1,1,1,1474,60.75,24.95,25.84,28.25 +733,2,5,28,7,4,1,1,1,1502,56.75,28.57,26.78,29.25 +734,2,5,28,7,5,1,1,1,935,73,24.46,23.58,25 +735,2,5,29,1,1,1,1,1,280,88.14,16.1,21.01,20.57 +736,2,5,29,1,2,1,1,2,529,88.25,25.75,21.61,21.5 +737,2,5,29,1,3,1,1,2,1490,74.25,28.97,25.13,27.75 +738,2,5,29,1,4,1,1,1,1448,71,30.98,26.55,30 +739,2,5,29,1,5,1,1,1,1041,82.8,19.63,24.15,26 +740,2,5,30,2,1,1,2,1,274,94,16.55,21.81,20.71 +741,2,5,30,2,2,1,2,2,522,78,12.07,25.13,27 +742,2,5,30,2,3,1,2,1,1364,45.5,5.23,32.19,36.25 +743,2,5,30,2,4,1,2,1,1173,39.5,24.95,32.89,36.25 +744,2,5,30,2,5,1,2,1,765,66.8,10.94,24.34,27.2 +745,2,5,31,3,1,2,1,1,200,85.86,8.97,23.42,24.57 +746,2,5,31,3,2,2,1,1,925,59,13.68,28.9,33.25 +747,2,5,31,3,3,2,1,1,555,42.5,8.05,33.36,37.75 +748,2,5,31,3,4,2,1,1,1336,45.5,19.31,32.89,37.75 +749,2,5,31,3,5,2,1,1,966,67.8,12.23,27.53,31.6 +750,2,6,1,4,1,2,1,1,213,85.43,18.16,24.23,26.43 +751,2,6,1,4,2,2,1,2,1060,76.75,22.53,26.31,30.5 +752,2,6,1,4,3,2,1,1,580,46.5,18.1,32.89,38 +753,2,6,1,4,4,2,1,1,1213,47.25,34.6,32.42,37.25 +754,2,6,1,4,5,2,1,1,908,69,21.57,26.78,30 +755,2,6,2,5,1,2,1,1,214,40,17.24,24.23,25.71 +756,2,6,2,5,2,2,1,1,1135,30,37.82,25.37,26.25 +757,2,6,2,5,3,2,1,1,785,25.25,41.44,28.19,28 +758,2,6,2,5,4,2,1,1,1603,21.25,48.28,28.42,28 +759,2,6,2,5,5,2,1,1,1231,29.2,25.1,23.4,25.4 +760,2,6,3,6,1,2,1,1,247,44.14,31.96,18.19,19.86 +761,2,6,3,6,2,2,1,1,1170,40.25,26.96,19.02,20.5 +762,2,6,3,6,3,2,1,1,939,28,30.98,23.49,25.25 +763,2,6,3,6,4,2,1,1,1683,25.75,32.19,25.37,26 +764,2,6,3,6,5,2,1,1,1273,33,14.16,21.7,24 +765,2,6,4,7,1,1,1,1,315,59.14,7.59,16.98,17.57 +766,2,6,4,7,2,1,1,1,753,45.75,8.85,20.44,23.5 +767,2,6,4,7,3,1,1,1,1696,32.25,17.7,25.37,26.25 +768,2,6,4,7,4,1,1,2,1529,30.25,26.15,26.31,27 +769,2,6,4,7,5,1,1,2,1049,49.6,10.95,23.4,25.6 +770,2,6,5,1,1,1,1,2,359,61.57,15.18,21.54,24.43 +771,2,6,5,1,2,1,1,2,540,74.25,21.32,20.43,22.75 +772,2,6,5,1,3,1,1,2,1422,65.25,12.88,23.02,25 +773,2,6,5,1,4,1,1,1,1568,53.5,5.23,25.6,27.5 +774,2,6,5,1,5,1,1,1,1017,72.6,18.99,22.46,24.2 +775,2,6,6,2,1,2,1,1,207,86.71,8.74,19.39,20.29 +776,2,6,6,2,2,2,1,1,1020,65,15.69,23.49,25.5 +777,2,6,6,2,3,2,1,1,589,36.25,11.67,27.95,28.5 +778,2,6,6,2,4,2,1,1,1567,31.5,20.11,28.42,28.75 +779,2,6,6,2,5,2,1,1,1165,60.4,12.88,23.58,25.6 +780,2,6,7,3,1,2,1,1,194,75.57,12.88,20.33,22.29 +781,2,6,7,3,2,2,1,2,1151,59,20.11,24.9,26.75 +782,2,6,7,3,3,2,1,2,676,46,28.97,29.13,31.5 +783,2,6,7,3,4,2,1,1,1581,42,29.37,29.6,31.5 +784,2,6,7,3,5,2,1,1,1231,63.6,16.41,25.84,28 +785,2,6,8,4,1,2,1,1,217,86.43,6.9,22.08,22.29 +786,2,6,8,4,2,2,1,1,1126,58.25,17.71,27.25,30 +787,2,6,8,4,3,2,1,1,574,41.25,15.69,33.6,38.5 +788,2,6,8,4,4,2,1,1,1326,38,22.53,35.01,40.5 +789,2,6,8,4,5,2,1,1,1158,67.6,16.41,29.04,35.2 +790,2,6,9,5,1,2,1,2,215,81.86,10.58,25.97,30.43 +791,2,6,9,5,2,2,1,2,1008,62,14.08,29.36,34 +792,2,6,9,5,3,2,1,1,512,38.5,18.91,34.77,40 +793,2,6,9,5,4,2,1,1,1179,35,22.53,34.77,38.25 +794,2,6,9,5,5,2,1,2,1001,49.8,18.35,28.47,30.8 +795,2,6,10,6,1,2,1,1,247,71.71,18.4,23.83,25.43 +796,2,6,10,6,2,2,1,1,1043,57.75,6.44,27.25,29.75 +797,2,6,10,6,3,2,1,1,714,43.25,6.44,31.48,34.25 +798,2,6,10,6,4,2,1,1,1477,52.75,22.93,30.54,35 +799,2,6,10,6,5,2,1,1,1105,67,18.35,27.16,31.2 +800,2,6,11,7,1,1,1,1,351,76.29,11.96,24.5,27 +801,2,6,11,7,2,1,1,1,705,59,18.51,26.55,28.75 +802,2,6,11,7,3,1,1,1,1439,55.25,17.7,29.37,33.5 +803,2,6,11,7,4,1,1,2,1391,53.75,16.09,28.19,31.25 +804,2,6,11,7,5,1,1,1,1080,73,21.57,23.58,25.4 +805,2,6,12,1,1,1,1,1,344,86.14,20.92,21.81,21.86 +806,2,6,12,1,2,1,1,1,619,69,5.23,25.13,27.75 +807,2,6,12,1,3,1,1,1,1475,54,17.3,29.6,33.75 +808,2,6,12,1,4,1,1,3,1218,74.75,27.76,25.61,28.75 +809,2,6,12,1,5,1,1,1,804,80.2,15.13,23.02,24.2 +810,2,6,13,2,1,2,1,1,199,68,34.49,19.8,21.29 +811,2,6,13,2,2,2,1,1,1146,48,40.24,20.2,22.25 +812,2,6,13,2,3,2,1,1,782,38.25,22.53,23.96,25.5 +813,2,6,13,2,4,2,1,1,1698,37.5,41.84,24.9,26 +814,2,6,13,2,5,2,1,1,1195,43.2,26.07,21.89,25 +815,2,6,14,3,1,2,1,1,198,53.14,29.89,18.86,21.29 +816,2,6,14,3,2,2,1,1,1174,48.25,32.99,19.96,22.25 +817,2,6,14,3,3,2,1,1,680,43.25,28.57,22.08,25 +818,2,6,14,3,4,2,1,1,1615,47.25,26.15,22.32,25.25 +819,2,6,14,3,5,2,1,1,1224,58,27.36,20.01,22.8 +820,2,6,15,4,1,2,1,1,222,64.57,29.89,16.17,16.71 +821,2,6,15,4,2,2,1,1,1210,52.25,11.67,19.73,22 +822,2,6,15,4,3,2,1,1,742,31.5,13.68,25.6,26.5 +823,2,6,15,4,4,2,1,1,1721,28.5,10.06,27.02,27.5 +824,2,6,15,4,5,2,1,1,1285,46.2,16.74,22.46,25.2 +825,2,6,16,5,1,2,1,1,216,64.29,11.5,19.39,21.72 +826,2,6,16,5,2,2,1,2,958,68.25,20.11,20.67,22.75 +827,2,6,16,5,3,2,1,2,660,55.75,34.2,25.37,27.5 +828,2,6,16,5,4,2,1,2,1050,72.75,22.13,23.02,24.25 +829,2,6,16,5,5,2,1,3,883,83,29.61,20.95,21.8 +830,2,6,17,6,1,2,1,1,182,94,8.74,18.05,18.72 +831,2,6,17,6,2,2,1,1,1098,70.5,10.46,22.55,24 +832,2,6,17,6,3,2,1,1,843,62,26.55,25.84,28 +833,2,6,17,6,4,2,1,1,1600,42,20.92,27.95,29.25 +834,2,6,17,6,5,2,1,1,1121,82,15.45,21.7,22.2 +835,2,6,18,7,1,1,1,1,311,85.86,8.05,20.74,21 +836,2,6,18,7,2,1,1,1,650,69.75,17.3,23.96,25.75 +837,2,6,18,7,3,1,1,1,1485,57.25,13.68,27.48,30.25 +838,2,6,18,7,4,1,1,2,1665,50.25,19.31,28.19,30.5 +839,2,6,18,7,5,1,1,2,1008,59.8,10.3,26.03,28.6 +840,2,6,19,1,1,1,1,2,336,73.14,9.43,23.69,25.29 +841,2,6,19,1,2,1,1,2,568,71.75,12.88,23.96,25.75 +842,2,6,19,1,3,1,1,2,1453,55.5,7.65,26.55,28.5 +843,2,6,19,1,4,1,1,2,1433,53,5.23,27.02,28.75 +844,2,6,19,1,5,1,1,1,954,73.4,18.99,24.15,26 +845,2,6,20,2,1,2,1,3,73,85.57,11.96,21.68,22.15 +846,2,6,20,2,2,2,1,3,577,81.75,24.14,19.26,20.5 +847,2,6,20,2,3,2,1,2,610,68.25,11.27,21.61,23.75 +848,2,6,20,2,4,2,1,1,1607,58.5,14.89,24.43,26.5 +849,2,6,20,2,5,2,1,1,1143,71.6,23.5,22.27,24.2 +850,3,6,21,3,1,2,1,3,204,83.71,15.86,20.74,21.43 +851,3,6,21,3,2,2,1,2,1146,88.25,14.89,21.14,20.5 +852,3,6,21,3,3,2,1,1,719,71.25,19.31,25.6,28.25 +853,3,6,21,3,4,2,1,1,1613,63.5,25.75,28.66,33.5 +854,3,6,21,3,5,2,1,1,1153,74.2,18.35,25.84,29.4 +855,3,6,22,4,1,2,1,1,224,81,7.13,22.75,23.43 +856,3,6,22,4,2,2,1,1,1088,75.5,14.08,25.84,29.5 +857,3,6,22,4,3,2,1,2,625,59.25,24.95,29.37,34 +858,3,6,22,4,4,2,1,2,1446,57.25,33.8,30.07,35.5 +859,3,6,22,4,5,2,1,2,1124,72.6,20.92,26.97,31 +860,3,6,23,5,1,2,1,1,220,75.43,20,25.71,29.72 +861,3,6,23,5,2,2,1,2,1113,70,16.09,26.78,30.5 +862,3,6,23,5,3,2,1,2,631,65,30.18,27.72,31.75 +863,3,6,23,5,4,2,1,2,1573,63.5,38.62,26.55,29.25 +864,3,6,23,5,5,2,1,1,1253,73.2,27.68,25.09,28.2 +865,3,6,24,6,1,2,1,1,230,83.29,20.46,23.02,24 +866,3,6,24,6,2,2,1,1,1110,65.5,23.34,26.08,28.25 +867,3,6,24,6,3,2,1,1,854,39.5,30.18,29.37,30.75 +868,3,6,24,6,4,2,1,1,1552,35.25,36.61,28.9,29.5 +869,3,6,24,6,5,2,1,1,1245,46.4,14.16,25.28,26.8 +870,3,6,25,7,1,1,1,1,363,54.14,19.54,22.48,25 +871,3,6,25,7,2,1,1,1,642,48.75,26.55,24.66,26.5 +872,3,6,25,7,3,1,1,1,1477,41.75,23.34,26.78,27.5 +873,3,6,25,7,4,1,1,1,1508,43.75,20.92,26.78,28 +874,3,6,25,7,5,1,1,1,1212,48.8,24.46,24.34,26.4 +875,3,6,26,1,1,1,1,1,369,59.86,6.21,20.87,24.43 +876,3,6,26,1,2,1,1,1,696,56,10.46,23.02,25.5 +877,3,6,26,1,3,1,1,1,1674,41.25,11.67,26.55,27 +878,3,6,26,1,4,1,1,1,1661,42.25,16.49,26.31,27.25 +879,3,6,26,1,5,1,1,2,905,51,9.34,25.09,27.2 +880,3,6,27,2,1,2,1,2,180,78.71,18.16,21.14,22.71 +881,3,6,27,2,2,2,1,2,1045,63.75,14.89,24.2,26.25 +882,3,6,27,2,3,2,1,2,642,57,8.45,25.6,27.75 +883,3,6,27,2,4,2,1,1,1672,54,6.44,26.78,28.75 +884,3,6,27,2,5,2,1,1,1169,66,6.44,24.71,27 +885,3,6,28,3,1,2,1,1,209,76.43,4.6,23.02,24.57 +886,3,6,28,3,2,2,1,1,1206,70.25,14.08,26.31,29.25 +887,3,6,28,3,3,2,1,1,718,45.25,12.07,31.48,34.75 +888,3,6,28,3,4,2,1,1,1510,49.75,23.34,31.24,35.75 +889,3,6,28,3,5,2,1,1,1005,65.2,28.65,26.03,28.4 +890,3,6,29,4,1,2,1,1,228,79.86,23.22,23.15,24.43 +891,3,6,29,4,2,2,1,1,1223,47.25,31.79,25.6,27.25 +892,3,6,29,4,3,2,1,1,832,33,26.96,28.66,29 +893,3,6,29,4,4,2,1,1,1675,28.75,35,30.3,30.75 +894,3,6,29,4,5,2,1,1,1267,40,28,25.84,26.8 +895,3,6,30,5,1,2,1,1,257,58.86,19.08,20.74,23.29 +896,3,6,30,5,2,2,1,1,1267,48,23.34,23.96,25.75 +897,3,6,30,5,3,2,1,1,797,34,18.51,27.72,28 +898,3,6,30,5,4,2,1,1,1743,26.75,26.95,28.66,28.75 +899,3,6,30,5,5,2,1,1,1451,39,14.16,25.46,26.4 +900,3,7,1,6,1,2,1,1,267,57.71,4.14,21.68,24.57 +901,3,7,1,6,2,2,1,1,1165,41,16.1,25.6,26.5 +902,3,7,1,6,3,2,1,1,1072,24.75,5.23,29.84,29.75 +903,3,7,1,6,4,2,1,1,1691,20.75,18.91,30.3,29.75 +904,3,7,1,6,5,2,1,1,1167,40.2,15.13,25.65,26.6 +905,3,7,2,7,1,1,1,1,328,58.57,4.6,21.81,24.14 +906,3,7,2,7,2,1,1,1,627,52.25,2.42,25.61,27.25 +907,3,7,2,7,3,1,1,1,1527,29,8.85,30.54,31 +908,3,7,2,7,4,1,1,1,1461,25.25,24.14,31.95,32 +909,3,7,2,7,5,1,1,1,1176,46.2,24.78,27.16,28.6 +910,3,7,3,1,1,1,1,3,333,69.14,16.1,23.56,25 +911,3,7,3,1,2,1,1,1,562,77,22.53,24.43,26.5 +912,3,7,3,1,3,1,1,1,1590,58,18.51,29.37,34 +913,3,7,3,1,4,1,1,1,1329,51,61.96,30.54,35 +914,3,7,3,1,5,1,1,2,835,82,13.52,22.83,23.6 +915,3,7,4,2,1,1,2,1,380,82.43,9.43,22.21,22.43 +916,3,7,4,2,2,1,2,1,640,69.5,11.27,25.37,27.75 +917,3,7,4,2,3,1,2,2,1627,50.5,2.42,28.66,31 +918,3,7,4,2,4,1,2,1,1714,44,6.04,30.07,32.5 +919,3,7,4,2,5,1,2,2,1682,59.6,13.2,27.16,29.6 +920,3,7,5,3,1,2,1,1,234,70,12.88,23.56,25.57 +921,3,7,5,3,2,2,1,1,1068,59.25,12.47,26.31,28.75 +922,3,7,5,3,3,2,1,1,754,45.25,12.88,29.6,32 +923,3,7,5,3,4,2,1,1,1484,47.5,10.06,30.3,33.75 +924,3,7,5,3,5,2,1,1,1125,63.8,18.99,28.1,32.4 +925,3,7,6,4,1,2,1,1,225,78.71,10.58,24.77,27.72 +926,3,7,6,4,2,2,1,2,972,77.75,10.46,25.37,29 +927,3,7,6,4,3,2,1,2,582,69,12.88,26.78,30.5 +928,3,7,6,4,4,2,1,1,1619,65.25,25.75,27.95,32 +929,3,7,6,4,5,2,1,1,1231,77,23.5,25.28,28.4 +930,3,7,7,5,1,2,1,1,217,89.71,14.94,22.48,22.29 +931,3,7,7,5,2,2,1,2,1015,75,12.47,25.84,28.5 +932,3,7,7,5,3,2,1,1,628,43.75,10.46,31.72,35.5 +933,3,7,7,5,4,2,1,1,1562,40,27.76,32.19,34.75 +934,3,7,7,5,5,2,1,1,1170,60,20.92,27.53,30.6 +935,3,7,8,6,1,2,1,1,249,75.71,15.17,25.03,28 +936,3,7,8,6,2,2,1,2,1168,73.25,29.77,26.31,30 +937,3,7,8,6,3,2,1,2,823,68.25,31.78,28.19,33.25 +938,3,7,8,6,4,2,1,3,756,79.5,36.21,24.9,27.25 +939,3,7,8,6,5,2,1,2,1044,81,17.06,23.02,24 +940,3,7,9,7,1,1,1,2,318,86.29,17.24,22.08,22.15 +941,3,7,9,7,2,1,1,1,764,64.5,24.14,25.6,27.5 +942,3,7,9,7,3,1,1,1,1445,42.25,24.54,30.07,32 +943,3,7,9,7,4,1,1,1,1597,35,5.23,31.01,32 +944,3,7,9,7,5,1,1,1,1212,58.2,19.64,26.78,29.4 +945,3,7,10,1,1,1,1,1,435,69.43,10.12,23.56,25.43 +946,3,7,10,1,2,1,1,1,594,64.25,8.45,26.31,29 +947,3,7,10,1,3,1,1,1,1380,47,29.77,29.84,32.75 +948,3,7,10,1,4,1,1,1,1459,39.75,28.97,31.24,33.25 +949,3,7,10,1,5,1,1,1,1013,59.6,27.04,27.34,30.2 +950,3,7,11,2,1,2,1,1,218,67.71,21.84,24.09,26.14 +951,3,7,11,2,2,2,1,1,1062,63.5,32.19,27.48,31.25 +952,3,7,11,2,3,2,1,1,551,53,30.18,31.72,37.5 +953,3,7,11,2,4,2,1,1,1371,55.25,43.45,32.42,39.75 +954,3,7,11,2,5,2,1,1,884,73,30.9,26.59,31 +955,3,7,12,3,1,2,1,1,199,76,12.42,25.17,28.14 +956,3,7,12,3,2,2,1,1,1046,55,28.97,28.66,32 +957,3,7,12,3,3,2,1,1,548,46.25,26.55,32.42,37 +958,3,7,12,3,4,2,1,1,1289,44.25,32.99,33.12,37.75 +959,3,7,12,3,5,2,1,1,1176,45.6,15.45,30.16,32.6 +960,3,7,13,4,1,2,1,1,219,57.71,12.41,27.18,29.57 +961,3,7,13,4,2,2,1,1,1061,47.75,24.14,29.6,32.5 +962,3,7,13,4,3,2,1,1,613,43,19.31,31.01,33.75 +963,3,7,13,4,4,2,1,1,1138,85.25,7.24,23.96,25.5 +964,3,7,13,4,5,2,1,1,1311,81.6,17.7,24.34,26.8 +965,3,7,14,5,1,2,1,1,251,59,28.51,21.54,24.86 +966,3,7,14,5,2,2,1,1,1171,48,30.98,23.02,25.5 +967,3,7,14,5,3,2,1,1,726,35,29.37,26.78,27.25 +968,3,7,14,5,4,2,1,1,1627,36.25,20.52,27.02,27.5 +969,3,7,14,5,5,2,1,1,1309,50.6,19.96,23.58,25.4 +970,3,7,15,6,1,2,1,1,298,73.71,18.16,20.47,22.86 +971,3,7,15,6,2,2,1,1,1211,61.25,19.31,22.79,24.75 +972,3,7,15,6,3,2,1,1,960,51.75,19.31,24.9,27 +973,3,7,15,6,4,2,1,1,1681,45.75,22.53,26.07,27.5 +974,3,7,15,6,5,2,1,1,1388,53.6,20.28,23.58,25.6 +975,3,7,16,7,1,1,1,1,332,73.43,14.03,20.2,22.43 +976,3,7,16,7,2,1,1,1,723,61.5,19.31,23.73,25.75 +977,3,7,16,7,3,1,1,1,1789,45.25,29.77,27.25,28.5 +978,3,7,16,7,4,1,1,1,1756,45,30.18,27.72,29 +979,3,7,16,7,5,1,1,1,1323,56.6,24.78,25.28,27.4 +980,3,7,17,1,1,1,1,1,411,69.57,21.84,21.95,23.86 +981,3,7,17,1,2,1,1,1,656,64,22.53,24.66,26.75 +982,3,7,17,1,3,1,1,1,1713,52,32.99,28.66,31.5 +983,3,7,17,1,4,1,1,1,1400,46,34.6,29.84,32.5 +984,3,7,17,1,5,1,1,1,1122,63,24.14,26.59,29.4 +985,3,7,18,2,1,2,1,1,219,78.29,17.7,23.15,24.57 +986,3,7,18,2,2,2,1,1,957,68.25,22.53,25.84,28.5 +987,3,7,18,2,3,2,1,1,596,56.5,23.34,30.07,35.25 +988,3,7,18,2,4,2,1,1,1532,51,35.01,31.24,36.25 +989,3,7,18,2,5,2,1,1,1154,62.4,22.21,27.91,31.8 +990,3,7,19,3,1,2,1,1,238,70,14.03,25.97,29.29 +991,3,7,19,3,2,2,1,2,1067,64.75,16.9,28.66,33.5 +992,3,7,19,3,3,2,1,1,604,54.5,10.46,31.72,38 +993,3,7,19,3,4,2,1,1,1478,54.5,16.9,31.71,38 +994,3,7,19,3,5,2,1,1,1154,75.2,12.55,26.78,31.4 +995,3,7,20,4,1,2,1,1,209,84.43,6.44,24.5,27.15 +996,3,7,20,4,2,2,1,1,1060,74.5,5.23,26.55,30.25 +997,3,7,20,4,3,2,1,1,538,57.75,13.68,31.01,37.5 +998,3,7,20,4,4,2,1,1,1324,56,15.69,31.71,38.5 +999,3,7,20,4,5,2,1,1,1201,70.6,22.21,29.22,36.8 +1000,3,7,21,5,1,2,1,2,214,82,16.78,26.51,31.57 +1001,3,7,21,5,2,2,1,2,933,77.25,20.92,28.66,36.25 +1002,3,7,21,5,3,2,1,1,490,56.25,34.6,33.36,43 +1003,3,7,21,5,4,2,1,1,1139,49,30.18,34.77,44.25 +1004,3,7,21,5,5,2,1,1,1008,71,22.85,30.92,42 +1005,3,7,22,6,1,2,1,1,233,72.71,10.35,28.53,35 +1006,3,7,22,6,2,2,1,2,897,61.25,12.07,31.95,41.25 +1007,3,7,22,6,3,2,1,1,448,49.25,19.72,35.94,47.25 +1008,3,7,22,6,4,2,1,1,905,43.5,23.34,34.54,41.5 +1009,3,7,22,6,5,2,1,1,904,53.6,10.3,31.1,36.6 +1010,3,7,23,7,1,1,1,1,295,58,8.74,29.33,33.71 +1011,3,7,23,7,2,1,1,1,484,47.75,20.12,31.25,35.25 +1012,3,7,23,7,3,1,1,1,932,38.5,12.47,35.24,41 +1013,3,7,23,7,4,1,1,1,829,38.5,13.28,35.94,42 +1014,3,7,23,7,5,1,1,1,745,59,18.99,30.16,36.2 +1015,3,7,24,1,1,1,1,1,348,63.71,10.35,29.2,35 +1016,3,7,24,1,2,1,1,1,519,55.25,30.58,30.78,36.25 +1017,3,7,24,1,3,1,1,1,1024,48.75,24.95,32.66,38.25 +1018,3,7,24,1,4,1,1,1,979,41.25,20.92,34.06,39.25 +1019,3,7,24,1,5,1,1,1,736,59,11.91,29.98,35 +1020,3,7,25,2,1,2,1,2,193,79.29,6.9,26.65,31.43 +1021,3,7,25,2,2,2,1,2,883,69.75,0,28.66,34.5 +1022,3,7,25,2,3,2,1,2,342,67.75,19.31,28.89,34.75 +1023,3,7,25,2,4,2,1,1,1328,79,18.91,25.6,29.25 +1024,3,7,25,2,5,2,1,1,1094,79.2,6.76,25.46,28.8 +1025,3,7,26,3,1,2,1,1,194,85.14,14.26,24.09,26.14 +1026,3,7,26,3,2,2,1,1,1067,48,24.95,27.48,29.25 +1027,3,7,26,3,3,2,1,1,627,30,15.69,31.48,32 +1028,3,7,26,3,4,2,1,1,1500,34.75,36.62,32.42,33.75 +1029,3,7,26,3,5,2,1,1,1202,50.2,21.89,28.85,31.4 +1030,3,7,27,4,1,2,1,1,210,52.86,23.45,26.65,28.86 +1031,3,7,27,4,2,2,1,1,1110,39.5,20.52,27.25,28.25 +1032,3,7,27,4,3,2,1,1,612,29.75,23.34,30.77,31.25 +1033,3,7,27,4,4,2,1,1,1521,26.25,20.12,31.71,31.75 +1034,3,7,27,4,5,2,1,1,1203,43,10.95,27.34,28.6 +1035,3,7,28,5,1,2,1,1,235,58,8.28,25.3,27.43 +1036,3,7,28,5,2,2,1,1,1087,62.5,21.73,27.72,31.5 +1037,3,7,28,5,3,2,1,1,630,51.25,28.16,31.71,37 +1038,3,7,28,5,4,2,1,1,1353,51.5,20.92,31.95,37.5 +1039,3,7,28,5,5,2,1,1,1085,66.6,24.14,28.85,34.4 +1040,3,7,29,6,1,2,1,1,238,81.14,6.67,26.38,31 +1041,3,7,29,6,2,2,1,2,923,61.25,16.9,30.3,35.75 +1042,3,7,29,6,3,2,1,1,600,33,21.73,36.42,40.75 +1043,3,7,29,6,4,2,1,1,1185,31.75,34.2,36.65,41 +1044,3,7,29,6,5,2,1,1,900,46,22.53,31.1,34.8 +1045,3,7,30,7,1,1,1,1,355,61.86,20,26.78,29.43 +1046,3,7,30,7,2,1,1,1,591,53,27.36,29.37,33 +1047,3,7,30,7,3,1,1,1,1271,31.5,9.66,32.66,33.75 +1048,3,7,30,7,4,1,1,1,1205,28.75,17.7,34.06,35.75 +1049,3,7,30,7,5,1,1,1,1053,46.4,15.45,28.66,30.8 +1050,3,7,31,1,1,1,1,1,343,65.43,4.14,26.65,29.57 +1051,3,7,31,1,2,1,1,1,624,49.5,14.08,28.89,31.25 +1052,3,7,31,1,3,1,1,1,1233,25.25,17.7,33.83,34.5 +1053,3,7,31,1,4,1,1,1,1223,23,27.76,34.53,35.25 +1054,3,7,31,1,5,1,1,1,879,61,31.87,28.28,32.2 +1055,3,8,1,2,1,2,1,1,191,78,15.63,24.36,26.72 +1056,3,8,1,2,2,2,1,1,927,45.5,9.66,29.84,32 +1057,3,8,1,2,3,2,1,1,560,31.25,24.54,34.3,36.75 +1058,3,8,1,2,4,2,1,1,1417,35.5,13.28,31.25,32.75 +1059,3,8,1,2,5,2,1,1,1171,65.4,21.24,25.28,27.4 +1060,3,8,2,3,1,2,1,1,202,72.57,9.89,23.29,25.29 +1061,3,8,2,3,2,2,1,1,1123,50.25,31.38,27.95,29.75 +1062,3,8,2,3,3,2,1,1,647,29.25,32.59,32.66,33.25 +1063,3,8,2,3,4,2,1,1,1554,27.75,24.14,33.83,35 +1064,3,8,2,3,5,2,1,2,1319,48.4,22.21,30.16,33.4 +1065,3,8,3,4,1,2,1,2,215,54,20.46,27.99,30.57 +1066,3,8,3,4,2,2,1,2,971,53.75,18.11,26.78,28.5 +1067,3,8,3,4,3,2,1,2,574,57.25,18.51,27.48,30.25 +1068,3,8,3,4,4,2,1,2,1185,80.25,3.62,24.66,27.5 +1069,3,8,3,4,5,2,1,3,629,87,9.34,24.34,26.8 +1070,3,8,4,5,1,2,1,2,168,91.14,10.12,23.56,24.72 +1071,3,8,4,5,2,2,1,2,980,79,34.6,25.13,27.75 +1072,3,8,4,5,3,2,1,2,726,60.25,16.5,27.95,31.5 +1073,3,8,4,5,4,2,1,1,1533,63.25,32.59,27.48,31 +1074,3,8,4,5,5,2,1,1,1169,74,20.92,24.34,27 +1075,3,8,5,6,1,2,1,1,222,76.14,9.89,22.35,23.57 +1076,3,8,5,6,2,2,1,1,1113,64,16.09,25.13,27 +1077,3,8,5,6,3,2,1,1,812,52,27.36,28.19,30.5 +1078,3,8,5,6,4,2,1,1,1556,51.25,28.56,28.42,31 +1079,3,8,5,6,5,2,1,1,1163,62.4,24.14,25.28,27.4 +1080,3,8,6,7,1,1,1,1,338,81.86,17.01,22.75,23.43 +1081,3,8,6,7,2,1,1,1,689,76.5,22.53,25.37,28 +1082,3,8,6,7,3,1,1,1,1552,57,27.76,29.6,34.25 +1083,3,8,6,7,4,1,1,3,1065,72.5,27.76,27.72,32.25 +1084,3,8,6,7,5,1,1,3,650,83,31.87,25.28,29 +1085,3,8,7,1,1,1,1,2,275,85.43,21.38,24.9,28 +1086,3,8,7,1,2,1,1,1,578,76,16.9,27.02,32 +1087,3,8,7,1,3,1,1,1,1285,48.5,21.32,32.89,39 +1088,3,8,7,1,4,1,1,3,942,74,35.81,26.07,30.25 +1089,3,8,7,1,5,1,1,1,705,83,15.13,25.46,29.6 +1090,3,8,8,2,1,2,1,1,170,81.86,11.04,23.96,25.43 +1091,3,8,8,2,2,2,1,1,923,56.75,37.82,27.48,30.25 +1092,3,8,8,2,3,2,1,1,662,45.25,32.59,30.77,33.5 +1093,3,8,8,2,4,2,1,1,1464,40,23.74,31.95,34.5 +1094,3,8,8,2,5,2,1,1,1107,56,8.69,28.47,31.8 +1095,3,8,9,3,1,2,1,1,202,68.57,3.45,25.57,28.57 +1096,3,8,9,3,2,2,1,1,1054,65.25,12.47,27.72,32 +1097,3,8,9,3,3,2,1,1,657,52,23.34,31.01,35.75 +1098,3,8,9,3,4,2,1,1,1566,47,25.35,31.01,34.5 +1099,3,8,9,3,5,2,1,1,1123,46.4,24.46,28.85,30.8 +1100,3,8,10,4,1,2,1,1,225,56.14,14.94,25.17,27.14 +1101,3,8,10,4,2,2,1,1,997,50,19.72,27.25,29 +1102,3,8,10,4,3,2,1,1,758,37.75,35.01,30.54,31.75 +1103,3,8,10,4,4,2,1,1,1619,27.5,32.99,31.71,32 +1104,3,8,10,4,5,2,1,1,1181,32.8,12.55,27.72,28 +1105,3,8,11,5,1,2,1,1,228,54.86,15.86,22.89,25.14 +1106,3,8,11,5,2,2,1,1,1026,43.75,20.92,25.13,26.25 +1107,3,8,11,5,3,2,1,1,760,31.5,19.71,28.42,28.75 +1108,3,8,11,5,4,2,1,1,1629,28.5,22.53,29.37,29.75 +1109,3,8,11,5,5,2,1,1,1149,43.6,12.55,25.09,26.6 +1110,3,8,12,6,1,2,1,1,219,53.57,16.32,21.27,25 +1111,3,8,12,6,2,2,1,1,1025,37.5,16.9,24.66,26.25 +1112,3,8,12,6,3,2,1,1,817,28.5,7.64,28.9,29.25 +1113,3,8,12,6,4,2,1,1,1564,30.75,12.47,29.6,30.25 +1114,3,8,12,6,5,2,1,1,1280,46.8,12.55,25.09,26.8 +1115,3,8,13,7,1,1,1,1,312,64.14,10.12,23.02,25 +1116,3,8,13,7,2,1,1,2,630,71.75,20.12,24.66,27.5 +1117,3,8,13,7,3,1,1,2,1147,75.75,25.35,25.84,28.5 +1118,3,8,13,7,4,1,1,2,1200,75.25,30.18,24.9,28 +1119,3,8,13,7,5,1,1,2,861,82.2,34.77,23.77,25.6 +1120,3,8,14,1,1,1,1,3,271,91,22.53,22.21,21.72 +1121,3,8,14,1,2,1,1,2,351,86.5,26.55,23.49,24.25 +1122,3,8,14,1,3,1,1,1,1226,75.5,23.33,25.6,29 +1123,3,8,14,1,4,1,1,1,1299,65,17.7,27.02,30.25 +1124,3,8,14,1,5,1,1,3,673,83.4,29.61,22.27,23.8 +1125,3,8,15,2,1,2,1,2,157,85.86,15.4,20.2,20.43 +1126,3,8,15,2,2,2,1,1,976,78.25,32.19,22.08,23 +1127,3,8,15,2,3,2,1,1,675,56.75,24.54,27.02,29.5 +1128,3,8,15,2,4,2,1,1,1478,56.5,29.77,26.31,28.25 +1129,3,8,15,2,5,2,1,1,1052,68.4,17.38,23.21,25.2 +1130,3,8,16,3,1,2,1,1,211,71.29,25.06,21.54,23.43 +1131,3,8,16,3,2,2,1,1,1096,61.5,37.02,23.96,26 +1132,3,8,16,3,3,2,1,1,686,48,34.2,27.48,28.75 +1133,3,8,16,3,4,2,1,1,1632,43,28.97,28.66,30 +1134,3,8,16,3,5,2,1,1,1100,55.8,7.08,25.46,27.2 +1135,3,8,17,4,1,2,1,1,187,73.29,3.91,22.21,24 +1136,3,8,17,4,2,2,1,1,1122,52.5,11.67,25.6,27.25 +1137,3,8,17,4,3,2,1,1,685,40.75,20.12,29.6,31.25 +1138,3,8,17,4,4,2,1,1,1567,47.5,22.53,29.37,32 +1139,3,8,17,4,5,2,1,1,1133,61,25.43,26.03,28.4 +1140,3,8,18,5,1,2,1,1,231,70.43,24.14,22.75,24.43 +1141,3,8,18,5,2,2,1,1,1085,71,29.37,24.43,26.75 +1142,3,8,18,5,3,2,1,1,683,52,32.99,29.37,32.75 +1143,3,8,18,5,4,2,1,1,1102,48.25,34.2,29.13,31.5 +1144,3,8,18,5,5,2,1,2,704,78.6,9.66,23.96,26 +1145,3,8,19,6,1,2,1,1,211,81.14,2.99,22.35,22.72 +1146,3,8,19,6,2,2,1,2,1044,73.25,8.45,24.2,26 +1147,3,8,19,6,3,2,1,2,839,61.25,15.29,27.25,30.25 +1148,3,8,19,6,4,2,1,1,1501,53.5,30.98,28.66,32 +1149,3,8,19,6,5,2,1,3,558,83,24.14,20.76,21.4 +1150,3,8,20,7,1,1,1,1,334,83,2.07,20.6,21.43 +1151,3,8,20,7,2,1,1,1,673,69.75,2.82,23.73,25.75 +1152,3,8,20,7,3,1,1,1,1500,55,12.47,27.48,30 +1153,3,8,20,7,4,1,1,1,1540,49,22.53,29.13,32 +1154,3,8,20,7,5,1,1,1,1144,68.4,20.92,25.84,28.6 +1155,3,8,21,1,1,1,1,1,303,82.29,25.29,23.69,25.14 +1156,3,8,21,1,2,1,1,1,628,77.5,26.96,25.37,28.75 +1157,3,8,21,1,3,1,1,1,1232,65,37.02,28.66,34 +1158,3,8,21,1,4,1,1,1,907,80.25,22.53,25.6,29.5 +1159,3,8,21,1,5,1,1,1,803,76.2,24.14,25.09,28.2 +1160,3,8,22,2,1,2,1,1,222,68.43,20.69,23.96,26 +1161,3,8,22,2,2,2,1,1,940,56,32.19,23.73,25.75 +1162,3,8,22,2,3,2,1,1,768,32.25,42.25,26.55,27 +1163,3,8,22,2,4,2,1,1,1719,28.75,35.41,26.55,27 +1164,3,8,22,2,5,2,1,1,1109,36.2,26.39,22.64,25.2 +1165,3,8,23,3,1,2,1,1,221,52.57,21.84,18.32,19.57 +1166,3,8,23,3,2,2,1,2,1221,45,5.23,22.32,25.25 +1167,3,8,23,3,3,2,1,1,1308,33.25,10.46,25.37,26.5 +1168,3,8,23,3,4,2,1,1,2036,33.5,20.92,25.84,27 +1169,3,8,23,3,5,2,1,1,1109,55.6,16.09,21.7,24.8 +1170,3,8,24,4,1,2,1,1,211,67.43,11.04,19.26,20.86 +1171,3,8,24,4,2,2,1,1,1135,65,20.52,22.08,24.75 +1172,3,8,24,4,3,2,1,1,860,51.25,39.43,27.02,28.75 +1173,3,8,24,4,4,2,1,1,1663,51.75,41.04,27.48,29.5 +1174,3,8,24,4,5,2,1,1,1261,61.6,34.76,25.28,27.4 +1175,3,8,25,5,1,2,1,1,211,75.71,39.09,23.42,25 +1176,3,8,25,5,2,2,1,2,1101,72.25,32.99,25.37,28.25 +1177,3,8,25,5,3,2,1,3,342,77.75,2.82,25.13,28.5 +1178,3,8,25,5,4,2,1,1,973,80.5,3.62,26.07,30.75 +1179,3,8,25,5,5,2,1,1,915,80,22.85,21.89,22.8 +1180,3,8,26,6,1,2,1,1,244,86.57,5.75,21.01,21.14 +1181,3,8,26,6,2,2,1,1,1023,76.5,5.23,24.2,26 +1182,3,8,26,6,3,2,1,2,913,61.5,5.63,28.42,32.75 +1183,3,8,26,6,4,2,1,1,1491,67.25,18.51,27.96,32.5 +1184,3,8,26,6,5,2,1,1,990,80,11.91,25.65,29.6 +1185,3,8,27,7,1,1,1,2,350,84,23.22,24.9,28 +1186,3,8,27,7,2,1,1,2,465,82.75,40.23,24.9,28 +1187,3,8,27,7,3,1,1,3,230,86,49.89,22.78,23.25 +1188,3,8,27,7,4,1,1,3,70,89,68.66,22.08,22 +1189,3,8,28,1,2,1,1,3,204,75.25,48.68,22.55,24 +1190,3,8,28,1,3,1,1,1,1421,49.25,41.84,27.02,28.5 +1191,3,8,28,1,4,1,1,1,1760,40.25,34.2,28.19,29.5 +1192,3,8,28,1,5,1,1,1,949,59.2,11.91,23.58,25.4 +1193,3,8,29,2,1,2,1,1,195,70.57,14.02,19.53,21.29 +1194,3,8,29,2,2,2,1,1,991,54.25,25.75,21.38,24.75 +1195,3,8,29,2,3,2,1,2,745,43,8.85,24.2,25.75 +1196,3,8,29,2,4,2,1,1,1640,44.5,21.73,24.66,26 +1197,3,8,29,2,5,2,1,1,1063,54,18.02,21.7,24.8 +1198,3,8,30,3,1,2,1,1,207,73.43,13.8,17.38,18 +1199,3,8,30,3,2,2,1,1,1205,53.5,19.31,21.85,23.75 +1200,3,8,30,3,3,2,1,1,850,35.5,12.47,26.31,27 +1201,3,8,30,3,4,2,1,1,1720,39.75,20.12,26.08,26.75 +1202,3,8,30,3,5,2,1,1,1222,57.4,3.86,22.08,24.4 +1203,3,8,31,4,1,2,1,1,202,74.57,1.38,18.59,19.86 +1204,3,8,31,4,2,2,1,1,1177,65.25,5.23,22.08,24 +1205,3,8,31,4,3,2,1,1,848,40.5,13.68,26.55,27.25 +1206,3,8,31,4,4,2,1,1,1654,44.5,16.9,26.08,27.25 +1207,3,8,31,4,5,2,1,1,1177,62.4,12.55,23.96,26.2 +1208,3,9,1,5,1,2,1,1,246,77.29,8.51,19.39,20.72 +1209,3,9,1,5,2,2,1,1,1185,70.25,10.06,21.84,23.75 +1210,3,9,1,5,3,2,1,2,838,51,16.49,25.84,28 +1211,3,9,1,5,4,2,1,1,1641,52.5,21.72,26.07,28 +1212,3,9,1,5,5,2,1,1,1205,59.6,22.85,23.21,25.2 +1213,3,9,2,6,1,2,1,1,224,77.57,14.25,20.74,22 +1214,3,9,2,6,2,2,1,1,1075,80,15.29,21.14,22.5 +1215,3,9,2,6,3,2,1,2,1014,67.25,15.29,23.73,25.75 +1216,3,9,2,6,4,2,1,2,1537,63,20.11,24.43,26.5 +1217,3,9,2,6,5,2,1,2,877,72.2,11.91,22.27,24.2 +1218,3,9,3,7,1,1,1,1,279,71.29,19.54,21.54,23.57 +1219,3,9,3,7,2,1,1,1,586,69,23.33,22.32,24.25 +1220,3,9,3,7,3,1,1,1,1184,65.25,24.14,24.66,27 +1221,3,9,3,7,4,1,1,1,1472,70,20.12,25.84,29 +1222,3,9,3,7,5,1,1,1,963,80.8,14.48,24.15,26.6 +1223,3,9,4,1,1,1,1,1,300,84.86,19.08,22.48,22.72 +1224,3,9,4,1,2,1,1,1,586,77,17.7,23.49,25 +1225,3,9,4,1,3,1,1,1,1552,66,25.35,27.95,32.25 +1226,3,9,4,1,4,1,1,1,1479,64.25,24.95,28.42,33.25 +1227,3,9,4,1,5,1,1,1,1023,71.6,25.75,26.22,29.8 +1228,3,9,5,2,1,1,2,2,231,74.71,21.15,23.83,26 +1229,3,9,5,2,2,1,2,2,538,74,18.51,23.73,25.5 +1230,3,9,5,2,3,1,2,2,1407,71,17.7,26.08,29.25 +1231,3,9,5,2,4,1,2,2,774,84,20.52,23.49,24.5 +1232,3,9,5,2,5,1,2,3,401,91.6,35.08,21.52,21.6 +1233,3,9,6,3,1,2,1,3,108,92,34.06,17.38,18 +1234,3,9,6,3,2,2,1,2,827,82.5,41.04,17.38,18 +1235,3,9,6,3,3,2,1,3,209,85.5,36.62,17.38,18 +1236,3,9,6,3,4,2,1,3,859,91,41.85,17.38,18 +1237,3,9,6,3,5,2,1,3,707,90.4,34.12,17.38,18 +1238,3,9,7,4,1,2,1,3,121,94,19.08,18.19,18.72 +1239,3,9,7,4,2,2,1,3,670,89.5,12.07,20.44,20 +1240,3,9,7,4,3,2,1,3,68,92.25,0,19.73,18.75 +1241,3,9,7,4,4,2,1,3,724,90.25,2.82,21.84,21.5 +1242,3,9,7,4,5,2,1,3,413,91,11.59,21.7,21.2 +1243,3,9,8,5,1,2,1,3,93,95,11.54,20.98,19.5 +1244,3,9,8,5,2,2,1,3,508,95.5,16.09,21.38,19.75 +1245,3,9,8,5,3,2,1,2,446,87.5,32.19,23.49,24.5 +1246,3,9,8,5,4,2,1,3,476,92.75,32.99,22.32,21.5 +1247,3,9,8,5,5,2,1,3,319,97.6,16.74,21.33,19 +1248,3,9,9,6,1,2,1,2,108,96.57,20,21.27,19.29 +1249,3,9,9,6,2,2,1,3,561,97,15.69,21.14,19 +1250,3,9,9,6,3,2,1,1,417,85.25,4.83,23.49,24.75 +1251,3,9,9,6,4,2,1,1,1388,72.5,15.69,25.84,29 +1252,3,9,9,6,5,2,1,1,1070,92,7.41,22.08,21.4 +1253,3,9,10,7,1,1,1,1,321,95.29,9.66,19.93,19.57 +1254,3,9,10,7,2,1,1,1,696,78.5,22.93,22.08,23 +1255,3,9,10,7,3,1,1,1,1493,58.5,28.16,26.31,29 +1256,3,9,10,7,4,1,1,1,1731,55.75,22.53,26.55,28.75 +1257,3,9,10,7,5,1,1,1,1104,74.2,7.08,22.64,23.8 +1258,3,9,11,1,1,1,1,1,385,83.71,10.12,20.6,21.43 +1259,3,9,11,1,2,1,1,1,692,76.25,0,22.55,23.75 +1260,3,9,11,1,3,1,1,1,1505,61.5,10.46,25.6,27.75 +1261,3,9,11,1,4,1,1,1,1606,54.5,27.76,25.6,27.5 +1262,3,9,11,1,5,1,1,1,858,71.6,14.81,21.14,23 +1263,3,9,12,2,1,2,1,1,167,87.33,3.49,18.16,18.83 +1264,3,9,12,2,2,2,1,1,1025,73,6.84,21.38,23 +1265,3,9,12,2,3,2,1,1,701,53.5,17.7,25.84,27.75 +1266,3,9,12,2,4,2,1,1,1671,50.25,12.07,25.84,27.75 +1267,3,9,12,2,5,2,1,1,1149,72.2,10.62,22.27,23.8 +1268,3,9,13,3,1,2,1,1,192,85.14,4.83,19.13,19.86 +1269,3,9,13,3,2,2,1,1,1136,75.5,11.27,21.38,22.75 +1270,3,9,13,3,3,2,1,1,714,55.25,26.96,26.08,27.75 +1271,3,9,13,3,4,2,1,1,1590,53.5,24.54,26.31,27.75 +1272,3,9,13,3,5,2,1,1,1131,75.4,16.42,22.64,24 +1273,3,9,14,4,1,2,1,1,239,83.71,9.43,20.2,21.14 +1274,3,9,14,4,2,2,1,1,1143,78.5,15.29,22.08,23.25 +1275,3,9,14,4,3,2,1,1,678,57.75,23.34,27.25,29.75 +1276,3,9,14,4,4,2,1,1,1638,53.75,26.55,27.48,30 +1277,3,9,14,4,5,2,1,2,1087,65.4,21.24,23.77,25.8 +1278,3,9,15,5,1,2,1,1,232,74.71,13.11,21.01,22.72 +1279,3,9,15,5,2,2,1,2,1059,73.25,25.34,22.08,24 +1280,3,9,15,5,3,2,1,2,697,66,30.58,22.78,24.75 +1281,3,9,15,5,4,2,1,2,862,73.75,52.71,16.68,17.75 +1282,3,9,15,5,5,2,1,1,809,65.4,35.09,13.24,13.6 +1283,3,9,16,6,1,2,1,1,219,71.14,25.52,10.8,11 +1284,3,9,16,6,2,2,1,1,1058,61,28.16,12.91,13.25 +1285,3,9,16,6,3,2,1,2,878,45.75,8.05,16.68,17.25 +1286,3,9,16,6,4,2,1,2,1609,48.25,18.51,16.68,17.25 +1287,3,9,16,6,5,2,1,2,996,59.8,5.47,15.31,15.8 +1288,3,9,17,7,1,1,1,1,327,73.43,15.63,13.62,14 +1289,3,9,17,7,2,1,1,2,571,72.25,25.75,14.32,14.75 +1290,3,9,17,7,3,1,1,2,1385,68.75,22.53,16.44,17 +1291,3,9,17,7,4,1,1,1,1347,71,24.14,16.68,17.25 +1292,3,9,17,7,5,1,1,1,881,72.4,18.35,15.5,16 +1293,3,9,18,1,1,1,1,1,335,78.43,24.6,12.95,13.29 +1294,3,9,18,1,2,1,1,1,513,70.75,24.14,14.32,14.75 +1295,3,9,18,1,3,1,1,1,1368,62,16.9,17.85,18.5 +1296,3,9,18,1,4,1,1,2,1348,62,16.09,18.56,19.25 +1297,3,9,18,1,5,1,1,2,710,68,12.23,17.38,18 +1298,3,9,19,2,1,2,1,2,214,74.86,17.24,15.9,16.43 +1299,3,9,19,2,2,2,1,2,1072,72.75,17.7,16.91,17.5 +1300,3,9,19,2,3,2,1,2,693,61,12.07,19.73,22 +1301,3,9,19,2,4,2,1,2,1558,63,17.7,19.5,21.75 +1302,3,9,19,2,5,2,1,2,1002,69,16.42,18.32,19 +1303,3,9,20,3,1,2,1,2,189,85.14,20,17.51,18.15 +1304,3,9,20,3,2,2,1,3,637,91,21.73,17.62,18.25 +1305,3,9,20,3,3,2,1,2,331,91,17.7,18.56,19.25 +1306,3,9,20,3,4,2,1,2,1459,81.75,12.88,20.44,21.5 +1307,3,9,20,3,5,2,1,1,1025,92.8,0,18.51,19.2 +1308,3,9,21,4,1,2,1,2,211,97.43,8.97,17.38,18 +1309,3,9,21,4,2,2,1,2,1133,97,10.46,18.32,18.75 +1310,3,9,21,4,3,2,1,2,733,77.25,16.5,22.32,23.75 +1311,3,9,21,4,4,2,1,2,1410,76.25,14.49,22.78,24.25 +1312,3,9,21,4,5,2,1,3,865,95.2,4.19,20.76,19 +1313,3,9,22,5,1,2,1,2,207,94.86,11.04,20.2,17.86 +1314,3,9,22,5,2,2,1,2,1049,95.75,18.51,20.91,19 +1315,3,9,22,5,3,2,1,2,717,84.5,20.92,22.79,23.5 +1316,3,9,22,5,4,2,1,2,1596,78.5,13.28,23.25,24.5 +1317,3,9,22,5,5,2,1,2,1226,93.2,8.69,21.52,20.4 +1318,4,9,23,6,1,2,1,2,250,97.43,4.37,20.6,18.29 +1319,4,9,23,6,2,2,1,3,717,97,13.68,21.14,19 +1320,4,9,23,6,3,2,1,3,108,98.5,10.46,20.67,18 +1321,4,9,23,6,4,2,1,3,450,97,2.82,20.67,18.5 +1322,4,9,23,6,5,2,1,1,870,96.4,12.87,20.2,18.6 +1323,4,9,24,7,1,1,1,2,302,94.86,8.97,18.86,19.57 +1324,4,9,24,7,2,1,1,2,635,88.5,10.06,19.5,19.75 +1325,4,9,24,7,3,1,1,2,1643,79.5,8.45,21.84,23 +1326,4,9,24,7,4,1,1,2,1727,76,11.67,22.55,24 +1327,4,9,24,7,5,1,1,1,1116,86,3.86,20.95,21.2 +1328,4,9,25,1,1,1,1,3,490,90.57,6.67,20.2,19.15 +1329,4,9,25,1,2,1,1,2,554,87,3.62,21.38,20.75 +1330,4,9,25,1,3,1,1,2,1490,77,3.62,23.26,24.5 +1331,4,9,25,1,4,1,1,1,1641,74,0,23.96,25.75 +1332,4,9,25,1,5,1,1,1,835,88.4,10.95,21.52,21 +1333,4,9,26,2,1,2,1,2,203,91.43,5.98,21.14,20.43 +1334,4,9,26,2,2,2,1,2,1046,91.5,10.46,21.61,21 +1335,4,9,26,2,3,2,1,2,709,75.5,19.31,24.43,26.75 +1336,4,9,26,2,4,2,1,1,1645,70,14.48,24.66,26.75 +1337,4,9,26,2,5,2,1,1,1027,89.6,13.52,21.89,21.6 +1338,4,9,27,3,1,2,1,1,224,94,10.58,21.14,20 +1339,4,9,27,3,2,2,1,2,991,91.5,15.29,21.84,21.25 +1340,4,9,27,3,3,2,1,2,588,82.75,15.29,23.73,25 +1341,4,9,27,3,4,2,1,2,1349,86,18.91,23.02,23.75 +1342,4,9,27,3,5,2,1,1,968,85.2,6.76,20.76,21.2 +1343,4,9,28,4,1,2,1,1,202,90.57,7.82,20.2,19.15 +1344,4,9,28,4,2,2,1,3,756,94,16.5,20.91,19.5 +1345,4,9,28,4,3,2,1,2,667,74.5,16.49,24.43,26.75 +1346,4,9,28,4,4,2,1,1,1576,73.25,21.72,24.43,26.25 +1347,4,9,28,4,5,2,1,3,706,87.2,22.21,20.76,20.6 +1348,4,9,29,5,1,2,1,2,213,93.14,17.93,20.2,18.57 +1349,4,9,29,5,2,2,1,1,1066,78.5,15.69,20.91,22 +1350,4,9,29,5,3,2,1,1,731,58.5,22.93,22.55,25 +1351,4,9,29,5,4,2,1,1,1691,43.5,34.2,23.25,25.5 +1352,4,9,29,5,5,2,1,1,1138,60.8,6.12,19.07,21.2 +1353,4,9,30,6,1,2,1,1,233,82.14,15.63,16.44,17 +1354,4,9,30,6,2,2,1,1,1158,74.25,14.89,18.09,19.5 +1355,4,9,30,6,3,2,1,2,1003,52,24.54,22.32,25 +1356,4,9,30,6,4,2,1,1,1707,51.25,28.57,20.91,23.75 +1357,4,9,30,6,5,2,1,1,1101,53.8,30.58,16.82,17.4 +1358,4,10,1,7,1,1,1,1,312,62.71,40.01,13.49,13.86 +1359,4,10,1,7,2,1,1,3,353,75.25,35,11.04,11.25 +1360,4,10,1,7,3,1,1,2,595,79.25,34.2,10.8,11 +1361,4,10,1,7,4,1,1,2,786,77.5,26.96,10.8,11 +1362,4,10,1,7,5,1,1,3,383,88.4,18.35,9.11,8 +1363,4,10,2,1,1,1,1,3,139,87,28.28,7.85,4.86 +1364,4,10,2,1,2,1,1,1,456,74.75,27.76,8.45,6 +1365,4,10,2,1,3,1,1,2,1177,67.75,22.53,10.09,9.75 +1366,4,10,2,1,4,1,1,3,720,84,21.72,8.92,6.75 +1367,4,10,2,1,5,1,1,2,426,77,17.71,9.11,7.8 +1368,4,10,3,2,1,2,1,1,156,79.86,7.82,8.65,8 +1369,4,10,3,2,2,2,1,2,875,68.5,11.67,9.86,9.25 +1370,4,10,3,2,3,2,1,2,511,71.25,14.08,11.04,11.25 +1371,4,10,3,2,4,2,1,2,1226,76,11.67,10.8,11 +1372,4,10,3,2,5,2,1,2,802,80.8,2.25,10.8,11 +1373,4,10,4,3,1,2,1,1,191,84.14,9.66,10.8,11 +1374,4,10,4,3,2,2,1,1,1022,73.25,28.16,13.15,13.5 +1375,4,10,4,3,3,2,1,1,679,57.25,30.58,18.32,19 +1376,4,10,4,3,4,2,1,1,1612,59,34.6,18.56,19.25 +1377,4,10,4,3,5,2,1,1,952,71.4,18.35,15.69,16.2 +1378,4,10,5,4,1,2,1,1,217,81.43,12.42,13.49,13.86 +1379,4,10,5,4,2,2,1,1,1120,64,21.33,16.44,17 +1380,4,10,5,4,3,2,1,1,793,42.75,30.18,21.38,25 +1381,4,10,5,4,4,2,1,1,1648,48.5,27.76,21.61,25 +1382,4,10,5,4,5,2,1,1,1048,72.8,10.94,16.63,17.2 +1383,4,10,6,5,1,2,1,1,220,65.57,22.76,13.08,13.43 +1384,4,10,6,5,2,2,1,1,1096,59.75,14.89,13.62,14 +1385,4,10,6,5,3,2,1,1,756,46.75,7.25,18.32,19 +1386,4,10,6,5,4,2,1,1,1648,52.75,14.89,18.56,19.25 +1387,4,10,6,5,5,2,1,1,1045,78.8,8.37,14.37,14.8 +1388,4,10,7,6,1,2,1,1,229,86.86,1.61,11.74,12 +1389,4,10,7,6,2,2,1,1,1074,80.25,2.42,14.09,14.5 +1390,4,10,7,6,3,2,1,1,1026,53,0,19.96,23.5 +1391,4,10,7,6,4,2,1,1,1717,50.25,9.25,20.91,23.5 +1392,4,10,7,6,5,2,1,1,939,60,0,16.44,17 +1393,4,10,8,7,1,1,1,1,259,85.71,3.68,12.81,13.14 +1394,4,10,8,7,2,1,1,1,730,82.5,2.42,14.32,14.75 +1395,4,10,8,7,3,1,1,1,1793,46.75,5.23,20.67,23.75 +1396,4,10,8,7,4,1,1,1,1699,44.75,8.85,21.61,25 +1397,4,10,8,7,5,1,1,1,928,77.4,5.15,16.06,16.6 +1398,4,10,9,1,1,1,1,1,342,88,1.38,13.08,13.43 +1399,4,10,9,1,2,1,1,1,701,79.75,2.42,15.03,15.5 +1400,4,10,9,1,3,1,1,1,1796,47,11.67,22.55,25.25 +1401,4,10,9,1,4,1,1,1,1729,53,13.68,22.55,25 +1402,4,10,9,1,5,1,1,1,943,82.2,8.69,17.19,17.8 +1403,4,10,10,2,1,1,2,1,188,91.43,0,14.02,14.43 +1404,4,10,10,2,2,1,2,1,852,80.25,4.43,16.44,17 +1405,4,10,10,2,3,1,2,1,1422,47.75,4.83,24.66,26.25 +1406,4,10,10,2,4,1,2,2,1718,48.5,8.05,23.96,25.75 +1407,4,10,10,2,5,1,2,1,937,83,8.05,18.7,19.8 +1408,4,10,11,3,1,2,1,2,197,89,8.51,16.57,17.14 +1409,4,10,11,3,2,2,1,2,1142,77.25,8.85,18.79,20.5 +1410,4,10,11,3,3,2,1,2,655,73,16.9,20.2,23 +1411,4,10,11,3,4,2,1,2,1638,76.75,21.73,20.2,22.25 +1412,4,10,11,3,5,2,1,2,931,82,24.14,18.88,19.6 +1413,4,10,12,4,1,2,1,2,180,87.57,28.05,17.78,18.43 +1414,4,10,12,4,2,2,1,2,973,88,43.46,17.38,18 +1415,4,10,12,4,3,2,1,3,361,91,31.39,17.38,18 +1416,4,10,12,4,4,2,1,3,523,92.5,22.53,17.62,18.25 +1417,4,10,12,4,5,2,1,3,379,95.2,11.27,17.38,18 +1418,4,10,13,5,1,2,1,2,113,97.43,9.66,17.38,18 +1419,4,10,13,5,2,2,1,3,468,100,12.47,17.85,18.5 +1420,4,10,13,5,3,2,1,2,484,83,9.66,21.84,22.25 +1421,4,10,13,5,4,2,1,1,1178,79.5,24.94,22.08,23.25 +1422,4,10,13,5,5,2,1,1,670,84,22.21,20.76,21.6 +1423,4,10,14,6,1,2,1,1,195,93.14,16.55,18.59,19.29 +1424,4,10,14,6,2,2,1,2,661,90,25.35,18.09,18.75 +1425,4,10,14,6,3,2,1,3,450,73,28.16,18.09,19.5 +1426,4,10,14,6,4,2,1,1,1478,42.75,32.59,19.5,22 +1427,4,10,14,6,5,2,1,1,860,48.8,23.82,15.31,15.8 +1428,4,10,15,7,1,1,1,1,291,62.86,16.09,12.55,12.86 +1429,4,10,15,7,2,1,1,1,711,57,30.58,14.56,15 +1430,4,10,15,7,3,1,1,1,1696,35.75,50.29,19.5,22.25 +1431,4,10,15,7,4,1,1,1,1633,32.75,36.61,19.73,22 +1432,4,10,15,7,5,1,1,1,886,43.6,17.06,15.31,15.8 +1433,4,10,16,1,1,1,1,1,320,53.29,16.32,11.87,12.14 +1434,4,10,16,1,2,1,1,1,684,53.5,21.72,14.09,14.5 +1435,4,10,16,1,3,1,1,1,1721,36.25,30.58,19.5,22.25 +1436,4,10,16,1,4,1,1,1,1611,44.75,45.47,19.73,22.25 +1437,4,10,16,1,5,1,1,1,705,51.4,44.74,17.76,18.4 +1438,4,10,17,2,1,2,1,1,211,55.71,31.04,17.11,17.71 +1439,4,10,17,2,2,2,1,2,1064,49,23.34,15.73,16.25 +1440,4,10,17,2,3,2,1,1,742,44.5,10.06,18.56,19.25 +1441,4,10,17,2,4,2,1,1,1648,60,17.3,18.56,19.25 +1442,4,10,17,2,5,2,1,1,905,77.4,6.76,15.88,16.4 +1443,4,10,18,3,1,2,1,1,182,88.86,5.75,13.35,13.71 +1444,4,10,18,3,2,2,1,1,1169,77.5,7.25,15.97,16.5 +1445,4,10,18,3,3,2,1,2,736,42.75,14.89,21.14,25 +1446,4,10,18,3,4,2,1,1,1704,58.75,18.51,20.2,23.25 +1447,4,10,18,3,5,2,1,2,957,69.2,16.42,17.19,17.8 +1448,4,10,19,4,1,2,1,2,94,84.67,20.38,16.13,16.67 +1449,4,10,19,4,2,2,1,3,603,80.75,46.67,16.68,17.25 +1450,4,10,19,4,3,2,1,3,482,94,27.76,16.91,17.5 +1451,4,10,19,4,4,2,1,3,642,97,16.9,18.09,18.75 +1452,4,10,19,4,5,2,1,2,603,92.8,23.17,19.64,19.6 +1453,4,10,20,5,1,2,1,1,172,85.43,43.22,16.17,16.71 +1454,4,10,20,5,2,2,1,1,1097,67.5,53.92,12.68,13 +1455,4,10,20,5,3,2,1,1,647,49,58.74,14.79,15.25 +1456,4,10,20,5,4,2,1,2,1357,50.25,42.65,14.32,14.75 +1457,4,10,20,5,5,2,1,1,922,52.4,33.8,12.87,13.2 +1458,4,10,21,6,1,2,1,1,223,68.43,20,9.46,8.43 +1459,4,10,21,6,2,2,1,1,995,60.5,17.7,11.27,11 +1460,4,10,21,6,3,2,1,1,818,45,30.98,15.5,16 +1461,4,10,21,6,4,2,1,1,1458,48.75,28.16,14.33,14.75 +1462,4,10,21,6,5,2,1,1,810,56.4,25.11,11.93,12.2 +1463,4,10,22,7,1,1,1,1,251,64.43,13.33,10.26,10.43 +1464,4,10,22,7,2,1,1,1,576,69,8.05,11.04,11 +1465,4,10,22,7,3,1,1,1,1257,52.5,11.27,14.09,14.5 +1466,4,10,22,7,4,1,1,1,1436,51.25,17.3,14.09,14.5 +1467,4,10,22,7,5,1,1,1,788,73.6,0,11.18,11.4 +1468,4,10,23,1,1,1,1,1,276,87,2.99,7.98,7.71 +1469,4,10,23,1,2,1,1,1,541,80.25,8.45,9.86,9.25 +1470,4,10,23,1,3,1,1,1,1569,60.25,22.53,15.5,16 +1471,4,10,23,1,4,1,1,1,1416,58.25,16.09,15.97,16.5 +1472,4,10,23,1,5,1,1,1,579,75,9.66,12.49,12.8 +1473,4,10,24,2,1,2,1,1,171,83.43,6.67,10.8,11 +1474,4,10,24,2,2,2,1,2,1007,86.5,18.51,11.98,12.25 +1475,4,10,24,2,3,2,1,2,792,67,18.51,16.68,17.25 +1476,4,10,24,2,4,2,1,1,1587,63,15.69,17.38,18 +1477,4,10,24,2,5,2,1,1,630,80.6,9.98,14.18,14.6 +1478,4,10,25,3,1,2,1,1,177,82.71,11.95,11.07,11.28 +1479,4,10,25,3,2,2,1,1,1073,63.5,18.1,13.38,13.75 +1480,4,10,25,3,3,2,1,1,764,41,34.6,17.62,18.25 +1481,4,10,25,3,4,2,1,1,1622,38.25,13.68,17.85,18.5 +1482,4,10,25,3,5,2,1,1,1051,69,16.41,13.43,13.8 +1483,4,10,26,4,1,2,1,1,168,69.43,23.68,12.28,12.57 +1484,4,10,26,4,2,2,1,2,1134,65.75,22.53,13.86,14.25 +1485,4,10,26,4,3,2,1,3,497,62.25,17.71,17.62,18.25 +1486,4,10,26,4,4,2,1,2,1190,77,9.66,16.44,17 +1487,4,10,26,4,5,2,1,2,905,84.6,3.86,15.31,15.8 +1488,4,10,27,5,1,2,1,3,114,90.57,1.38,14.16,14.57 +1489,4,10,27,5,2,2,1,2,686,88,17.3,14.8,15.25 +1490,4,10,27,5,3,2,1,3,271,86.75,11.67,15.73,16.25 +1491,4,10,27,5,4,2,1,2,876,73.75,32.19,16.21,16.75 +1492,4,10,27,5,5,2,1,1,712,64.6,51.5,10.42,9 +1493,4,10,28,6,1,2,1,1,182,65.57,28.74,6.5,3.43 +1494,4,10,28,6,2,2,1,1,938,60,26.55,6.57,3.5 +1495,4,10,28,6,3,2,1,2,794,44.5,21.73,9.39,8.5 +1496,4,10,28,6,4,2,1,2,1337,48,19.31,8.92,6.75 +1497,4,10,28,6,5,2,1,3,496,67.4,24.46,7.23,4.4 +1498,4,10,29,7,1,1,1,3,69,86.14,37.7,5.43,1 +1499,4,10,29,7,2,1,1,3,59,88.5,37.82,4.69,0 +1500,4,10,29,7,3,1,1,3,136,88.5,49.89,3.51,-2.5 +1501,4,10,29,7,4,1,1,3,137,93,33.4,2.34,-2.75 +1502,4,10,29,7,5,1,1,1,226,87,32.19,2.9,-1.8 +1503,4,10,30,1,1,1,1,1,205,80.86,30.81,2.74,-2 +1504,4,10,30,1,2,1,1,1,427,67.75,15.29,5.16,3.25 +1505,4,10,30,1,3,1,1,1,1199,46,22.53,10.33,10 +1506,4,10,30,1,4,1,1,1,1068,35.5,14.48,10.8,10.5 +1507,4,10,30,1,5,1,1,1,432,66.8,6.44,8.73,8.8 +1508,4,10,31,2,1,2,1,1,152,87,1.61,3.41,2.86 +1509,4,10,31,2,2,2,1,2,915,78.25,8.85,6.1,5 +1510,4,10,31,2,3,2,1,1,591,46.25,21.73,11.97,12.25 +1511,4,10,31,2,4,2,1,1,1348,55.25,14.89,11.74,12 +1512,4,10,31,2,5,2,1,2,663,72,16.42,9.67,8.6 +1513,4,11,1,3,1,2,1,1,161,81.86,18.62,8.25,6.14 +1514,4,11,1,3,2,2,1,1,1030,68.75,20.11,10.09,9 +1515,4,11,1,3,3,2,1,1,610,53.5,17.3,14.8,15.25 +1516,4,11,1,3,4,2,1,1,1450,50.25,15.29,13.62,14 +1517,4,11,1,3,5,2,1,1,817,75.6,1.93,9.67,9.8 +1518,4,11,2,4,1,2,1,1,156,83.57,0,6.23,6.14 +1519,4,11,2,4,2,2,1,1,1084,81.5,2.42,7.98,8 +1520,4,11,2,4,3,2,1,1,666,54.75,16.9,13.86,14.25 +1521,4,11,2,4,4,2,1,1,1485,58.75,16.9,13.38,13.75 +1522,4,11,2,4,5,2,1,1,795,72,13.52,9.86,9.4 +1523,4,11,3,5,1,2,1,1,189,78.86,14.02,7.85,6.28 +1524,4,11,3,5,2,2,1,2,968,79.75,15.29,8.68,7.75 +1525,4,11,3,5,3,2,1,1,620,54.5,21.72,15.27,15.75 +1526,4,11,3,5,4,2,1,1,1360,54.5,15.69,15.27,15.75 +1527,4,11,3,5,5,2,1,1,837,75.6,9.01,11.36,11.6 +1528,4,11,4,6,1,2,1,2,174,84,5.29,10.26,10.43 +1529,4,11,4,6,2,2,1,2,1028,78.75,37.02,11.27,11.5 +1530,4,11,4,6,3,2,1,2,754,55,44.66,13.15,13.5 +1531,4,11,4,6,4,2,1,1,1381,37.5,43.05,12.68,13 +1532,4,11,4,6,5,2,1,1,709,44.2,33.48,8.54,6 +1533,4,11,5,7,1,1,1,1,186,52.86,33.8,5.7,1.57 +1534,4,11,5,7,2,1,1,1,486,56.25,31.38,5.63,1.75 +1535,4,11,5,7,3,1,1,1,1351,41,13.68,10.09,9.5 +1536,4,11,5,7,4,1,1,1,1249,41.75,18.11,10.09,10 +1537,4,11,5,7,5,1,1,1,654,64,0,6.66,6.6 +1538,4,11,6,1,1,1,1,1,255,82.71,3.45,3.95,3.14 +1539,4,11,6,1,2,1,1,2,550,78.75,10.06,6.1,4.75 +1540,4,11,6,1,3,1,1,1,1300,54.5,12.07,12.91,13.25 +1541,4,11,6,1,4,1,1,1,1094,59.75,18.51,13.15,13.5 +1542,4,11,6,1,5,1,1,1,450,82.4,10.3,8.92,8.4 +1543,4,11,7,2,1,2,1,1,159,91.29,0,6.91,6.86 +1544,4,11,7,2,2,2,1,2,1018,96.5,9.66,7.04,5.75 +1545,4,11,7,2,3,2,1,1,641,57.5,9.66,15.27,15.75 +1546,4,11,7,2,4,2,1,1,1418,46.5,10.06,15.97,16.5 +1547,4,11,7,2,5,2,1,1,799,76,6.12,10.42,10.2 +1548,4,11,8,3,1,2,1,1,154,87.86,4.37,6.77,6.29 +1549,4,11,8,3,2,2,1,1,1109,84.5,8.05,8.45,8 +1550,4,11,8,3,3,2,1,1,707,52.5,14.48,16.44,17 +1551,4,11,8,3,4,2,1,1,1438,47.5,14.48,17.14,17.75 +1552,4,11,8,3,5,2,1,1,797,75.8,0,10.61,10.8 +1553,4,11,9,4,1,2,1,1,162,88.71,0,7.17,7.14 +1554,4,11,9,4,2,2,1,1,1080,87.25,2.82,7.98,8 +1555,4,11,9,4,3,2,1,1,678,54.25,17.71,15.27,15.75 +1556,4,11,9,4,4,2,1,1,1325,55.75,16.9,14.8,15.25 +1557,4,11,9,4,5,2,1,1,864,82,2.25,11.36,11.6 +1558,4,11,10,5,1,2,1,2,191,93.71,6.9,9.86,9.43 +1559,4,11,10,5,2,2,1,2,1036,92.5,15.69,11.27,11.5 +1560,4,11,10,5,3,2,1,2,435,75.5,37.42,10.8,9.5 +1561,4,11,10,5,4,2,1,3,585,81,24.54,8.92,6.75 +1562,4,11,10,5,5,2,1,2,686,60,26.07,8.73,6.2 +1563,4,11,11,6,1,1,2,1,169,54.71,28.28,6.5,3.14 +1564,4,11,11,6,2,1,2,1,780,43.5,43.45,6.34,2.25 +1565,4,11,11,6,3,1,2,1,892,39.5,53.11,8.92,6.5 +1566,4,11,11,6,4,1,2,1,972,37.25,35.81,8.45,5.25 +1567,4,11,11,6,5,1,2,1,555,41.4,17.38,6.66,4.8 +1568,4,11,12,7,1,1,1,1,199,69.29,13.56,2.74,-0.14 +1569,4,11,12,7,2,1,1,1,520,66.75,22.53,5.16,2.25 +1570,4,11,12,7,3,1,1,1,1469,42.5,30.98,13.15,13.5 +1571,4,11,12,7,4,1,1,1,1235,38.25,26.55,15.03,15.5 +1572,4,11,12,7,5,1,1,1,644,50.4,26.71,11.55,11.8 +1573,4,11,13,1,1,1,1,2,263,61.71,16.32,8.92,7.43 +1574,4,11,13,1,2,1,1,1,498,57.5,24.95,9.86,9 +1575,4,11,13,1,3,1,1,2,1359,31.5,47.07,15.97,16.5 +1576,4,11,13,1,4,1,1,2,1050,31,37.02,16.44,17 +1577,4,11,13,1,5,1,1,1,547,37.6,35.73,14.75,15.2 +1578,4,11,14,2,1,2,1,1,203,65.43,29.66,13.08,13.43 +1579,4,11,14,2,2,2,1,2,1118,67.25,28.57,14.09,14.5 +1580,4,11,14,2,3,2,1,1,718,52.75,38.22,19.26,21.75 +1581,4,11,14,2,4,2,1,1,1518,48,34.6,20.67,23.5 +1582,4,11,14,2,5,2,1,1,929,55.8,36.05,19.64,22.8 +1583,4,11,15,3,1,2,1,1,194,64.57,29.43,18.05,18.72 +1584,4,11,15,3,2,2,1,2,1137,66,17.3,17.85,18.5 +1585,4,11,15,3,3,2,1,2,610,63,18.91,17.62,18.25 +1586,4,11,15,3,4,2,1,2,1354,68,20.11,16.21,16.75 +1587,4,11,15,3,5,2,1,2,900,82.6,17.06,14.56,15 +1588,4,11,16,4,1,2,1,2,124,94.86,11.04,13.49,13.85 +1589,4,11,16,4,2,2,1,3,487,94,0,13.62,14 +1590,4,11,16,4,3,2,1,3,233,97,9.66,13.62,14 +1591,4,11,16,4,4,2,1,3,611,91,21.33,14.32,14.75 +1592,4,11,16,4,5,2,1,3,362,88,30.58,12.49,12.8 +1593,4,11,17,5,1,2,1,2,138,74.14,29.89,10.67,10 +1594,4,11,17,5,2,2,1,3,802,61,33.4,7.98,4.25 +1595,4,11,17,5,3,2,1,2,452,54.25,39.43,7.74,4 +1596,4,11,17,5,4,2,1,1,1017,42.25,39.03,7.28,3.75 +1597,4,11,17,5,5,2,1,1,644,46.6,26.71,5.35,2 +1598,4,11,18,6,1,2,1,1,150,44.14,21.38,3.15,-0.57 +1599,4,11,18,6,2,2,1,1,919,42.5,22.53,3.28,-0.25 +1600,4,11,18,6,3,2,1,1,636,32.75,13.28,7.28,5.25 +1601,4,11,18,6,4,2,1,1,1093,31.25,15.29,7.28,5.5 +1602,4,11,18,6,5,2,1,1,594,49.8,16.42,4.78,2 +1603,4,11,19,7,1,1,1,1,171,53.71,28.05,3.82,-0.57 +1604,4,11,19,7,2,1,1,1,475,53.25,28.56,4.93,1 +1605,4,11,19,7,3,1,1,1,1256,34.25,23.34,10.8,11 +1606,4,11,19,7,4,1,1,1,1109,41.25,22.13,11.04,11.25 +1607,4,11,19,7,5,1,1,2,652,62.8,17.7,9.11,8.2 +1608,4,11,20,1,1,1,1,2,295,65.86,27.82,10.93,11.14 +1609,4,11,20,1,2,1,1,1,455,70.5,20.92,12.21,12.5 +1610,4,11,20,1,3,1,1,2,1322,62.25,18.51,16.21,16.75 +1611,4,11,20,1,4,1,1,2,1005,64.5,19.31,16.68,17.25 +1612,4,11,20,1,5,1,1,2,443,78.6,10.3,14.75,15.2 +1613,4,11,21,2,1,2,1,3,137,98.29,10.11,12.81,13.14 +1614,4,11,21,2,2,2,1,2,1009,91.25,7.24,14.56,15 +1615,4,11,21,2,3,2,1,2,559,79.75,15.29,15.5,16 +1616,4,11,21,2,4,2,1,3,618,92.5,25.35,12.21,12.5 +1617,4,11,21,2,5,2,1,3,442,88.4,18.99,10.8,11 +1618,4,11,22,3,1,2,1,3,118,95.71,13.57,9.99,10.14 +1619,4,11,22,3,2,2,1,3,512,94,12.07,10.33,10.5 +1620,4,11,22,3,3,2,1,3,114,98.5,10.87,11.27,11.5 +1621,4,11,22,3,4,2,1,3,409,97,2.42,12.68,13 +1622,4,11,22,3,5,2,1,2,454,96.4,22.21,14.18,14.6 +1623,4,11,23,4,1,2,1,2,124,94,28.05,14.69,15.14 +1624,4,11,23,4,2,2,1,2,722,95.5,15.69,15.27,15.75 +1625,4,11,23,4,3,2,1,2,663,58.75,48.28,13.62,14 +1626,4,11,23,4,4,2,1,2,688,61.25,49.09,10.8,11 +1627,4,11,23,4,5,2,1,1,369,59.8,44.1,8.73,5.8 +1628,4,11,24,5,1,1,2,1,93,60.43,20.69,6.23,4 +1629,4,11,24,5,2,1,2,1,265,64.5,5.23,6.8,5.75 +1630,4,11,24,5,3,1,2,1,635,35.25,28.16,13.86,14.25 +1631,4,11,24,5,4,1,2,1,374,37,19.72,14.32,14.75 +1632,4,11,24,5,5,1,2,1,128,69.6,15.13,9.11,7.8 +1633,4,11,25,6,1,2,1,1,80,77,8.97,5.97,4.57 +1634,4,11,25,6,2,2,1,1,346,77.25,8.05,6.1,5 +1635,4,11,25,6,3,2,1,1,1053,50.25,17.71,14.09,14.5 +1636,4,11,25,6,4,2,1,1,908,38.25,14.89,15.27,15.75 +1637,4,11,25,6,5,2,1,1,405,68.6,6.12,9.48,9.2 +1638,4,11,26,7,1,1,1,1,133,77.86,7.59,6.5,5.71 +1639,4,11,26,7,2,1,1,1,301,80,7.65,7.04,6 +1640,4,11,26,7,3,1,1,1,1163,51.25,6.44,13.15,13.5 +1641,4,11,26,7,4,1,1,2,958,49.5,14.48,13.62,14 +1642,4,11,26,7,5,1,1,2,513,73.6,1.93,10.24,10.4 +1643,4,11,27,1,1,1,1,1,156,83.71,7.13,8.65,8.29 +1644,4,11,27,1,2,1,1,1,365,78.25,29.37,11.98,12.25 +1645,4,11,27,1,3,1,1,1,1122,55.5,35,17.85,19.25 +1646,4,11,27,1,4,1,1,1,999,53.5,24.14,18.09,19.5 +1647,4,11,27,1,5,1,1,1,429,68.2,27.36,14.75,15.2 +1648,4,11,28,2,1,2,1,1,176,82.17,17.71,12.52,12.83 +1649,4,11,28,2,2,2,1,2,999,86.75,9.66,12.68,13 +1650,4,11,28,2,3,2,1,2,601,60,5.63,18.56,20.25 +1651,4,11,28,2,4,2,1,1,1298,60,20.92,18.79,19.5 +1652,4,11,28,2,5,2,1,2,793,77.8,20.28,17,17.6 +1653,4,11,29,3,1,2,1,1,163,85.14,15.18,16.04,16.57 +1654,4,11,29,3,2,2,1,1,1029,75,36.21,17.62,18.25 +1655,4,11,29,3,3,2,1,3,87,85.25,32.19,12.45,12.75 +1656,4,11,29,3,4,2,1,3,928,85.75,30.98,10.8,11 +1657,4,11,29,3,5,2,1,2,707,82.8,32.83,9.86,9.4 +1658,4,11,30,4,1,2,1,1,168,73,24.6,6.64,3.86 +1659,4,11,30,4,2,2,1,1,1066,75.75,21.73,5.86,3 +1660,4,11,30,4,3,2,1,2,541,48.25,35,9.62,9 +1661,4,11,30,4,4,2,1,1,1097,47.5,34.2,8.45,5 +1662,4,11,30,4,5,2,1,1,741,55,33.15,6.48,2.8 +1663,4,12,1,5,1,2,1,1,168,57.29,30.58,4.22,-0.29 +1664,4,12,1,5,2,2,1,1,1070,57.5,35.41,5.16,0.75 +1665,4,12,1,5,3,2,1,1,554,43.75,24.95,9.62,8.5 +1666,4,12,1,5,4,2,1,1,1178,42.25,17.7,9.86,9.25 +1667,4,12,1,5,5,2,1,1,757,56.8,8.69,6.48,5.6 +1668,4,12,2,6,1,2,1,1,177,77.14,2.76,2.88,2.29 +1669,4,12,2,6,2,2,1,1,1001,82.5,8.45,4.22,3 +1670,4,12,2,6,3,2,1,1,741,53.5,14.48,9.86,9 +1671,4,12,2,6,4,2,1,1,1258,42.5,4.83,11.5,11.75 +1672,4,12,2,6,5,2,1,1,763,49.6,26.07,7.98,6 +1673,4,12,3,7,1,1,1,1,230,66.57,16.55,3.82,0.86 +1674,4,12,3,7,2,1,1,1,408,70.25,11.27,4.22,2.5 +1675,4,12,3,7,3,1,1,1,1268,50.75,4.83,8.45,8 +1676,4,12,3,7,4,1,1,1,1098,51.75,3.62,9.15,8.75 +1677,4,12,3,7,5,1,1,1,610,62.8,10.63,6.29,5 +1678,4,12,4,1,1,1,1,1,279,80.29,2.99,4.76,4.29 +1679,4,12,4,1,2,1,1,1,423,84,3.62,5.4,5 +1680,4,12,4,1,3,1,1,1,1263,72.5,18.51,9.86,9 +1681,4,12,4,1,4,1,1,1,1042,66.75,14.89,10.8,11 +1682,4,12,4,1,5,1,1,1,478,81.4,9.66,8.73,7.8 +1683,4,12,5,2,1,2,1,1,168,87.86,5.98,6.64,6 +1684,4,12,5,2,2,2,1,1,964,89.25,4.83,7.98,7.5 +1685,4,12,5,2,3,2,1,2,581,75.25,7.65,11.27,11.25 +1686,4,12,5,2,4,2,1,1,1241,72.25,4.83,13.38,13.75 +1687,4,12,5,2,5,2,1,2,857,84.6,9.98,13.24,13.6 +1688,4,12,6,3,1,2,1,2,163,87,26.44,13.75,14.14 +1689,4,12,6,3,2,2,1,2,902,94,24.14,13.62,14 +1690,4,12,6,3,3,2,1,3,233,98.5,24.14,13.86,14.25 +1691,4,12,6,3,4,2,1,3,699,100,25.75,14.09,14.5 +1692,4,12,6,3,5,2,1,3,597,100,24.14,13.43,13.8 +1693,4,12,7,4,1,2,1,3,77,100,25.29,13.62,14 +1694,4,12,7,4,2,2,1,3,229,100,12.07,12.68,13 +1695,4,12,7,4,3,2,1,3,141,100,16.49,12.68,13 +1696,4,12,7,4,4,2,1,3,164,95.5,28.16,11.27,11.5 +1697,4,12,7,4,5,2,1,3,94,89.4,56.97,5.72,0.4 +1698,4,12,8,5,1,2,1,1,118,67.43,33.11,3.68,-1.14 +1699,4,12,8,5,2,2,1,1,1008,54.75,32.99,3.04,-1.75 +1700,4,12,8,5,3,2,1,1,523,49.5,32.19,5.86,2.25 +1701,4,12,8,5,4,2,1,1,974,47.75,17.7,6.34,4.5 +1702,4,12,8,5,5,2,1,1,699,62.4,11.59,4.22,2.2 +1703,4,12,9,6,1,2,1,1,151,74.29,1.38,2.74,2.29 +1704,4,12,9,6,2,2,1,1,974,76.75,9.26,3.98,2.75 +1705,4,12,9,6,3,2,1,1,664,55.75,27.76,8.92,7.5 +1706,4,12,9,6,4,2,1,1,1119,58.75,14.08,8.68,8 +1707,4,12,9,6,5,2,1,1,712,77,0,6.1,6 +1708,4,12,10,7,1,1,1,2,248,66.14,12.65,4.35,2.14 +1709,4,12,10,7,2,1,1,1,425,62,23.33,4.93,1.5 +1710,4,12,10,7,3,1,1,1,1098,40.75,42.65,7.51,3.5 +1711,4,12,10,7,4,1,1,1,897,34.75,35.01,6.1,2.25 +1712,4,12,10,7,5,1,1,1,522,41,22.21,2.72,-1.2 +1713,4,12,11,1,1,1,1,1,228,57.29,17.01,0.06,-3.71 +1714,4,12,11,1,2,1,1,1,404,56.75,0,1.16,0.75 +1715,4,12,11,1,3,1,1,1,995,32.25,0,5.16,5 +1716,4,12,11,1,4,1,1,1,798,32.5,5.23,5.16,4 +1717,4,12,11,1,5,1,1,1,318,57.8,6.44,2.15,0.8 +1718,4,12,12,2,1,2,1,1,123,73.57,2.99,0.59,-0.57 +1719,4,12,12,2,2,2,1,2,945,77.25,11.67,0.23,-3 +1720,4,12,12,2,3,2,1,2,537,54.25,11.67,5.63,4.25 +1721,4,12,12,2,4,2,1,2,1062,56.5,7.65,6.57,5.75 +1722,4,12,12,2,5,2,1,1,643,68.6,3.86,4.6,4 +1723,4,12,13,3,1,2,1,1,142,80.86,0,1.27,0.86 +1724,4,12,13,3,2,2,1,1,958,65.25,16.1,2.81,-0.25 +1725,4,12,13,3,3,2,1,1,552,40.75,32.19,9.62,8.25 +1726,4,12,13,3,4,2,1,1,1138,38.5,24.94,9.39,8.25 +1727,4,12,13,3,5,2,1,1,733,54.4,14.16,6.1,4.4 +1728,4,12,14,4,1,2,1,1,152,76.14,0,4.35,4.14 +1729,4,12,14,4,2,2,1,2,1095,70,0,5.63,5.5 +1730,4,12,14,4,3,2,1,2,543,55.75,7.65,8.92,8.5 +1731,4,12,14,4,4,2,1,2,1198,56.75,12.88,9.39,8.75 +1732,4,12,14,4,5,2,1,2,752,66,15.13,7.98,6.4 +1733,4,12,15,5,1,2,1,2,202,69.43,20,7.04,5 +1734,4,12,15,5,2,2,1,2,1104,64,26.96,8.68,6.75 +1735,4,12,15,5,3,2,1,2,588,57,43.05,14.09,14.5 +1736,4,12,15,5,4,2,1,3,914,61.25,26.15,15.73,16.25 +1737,4,12,15,5,5,2,1,1,901,61.4,33.8,16.25,16.8 +1738,4,12,16,6,1,2,1,1,244,62.71,25.75,14.56,15 +1739,4,12,16,6,2,2,1,1,1065,46,37.82,8.92,6.5 +1740,4,12,16,6,3,2,1,2,582,41.25,33.39,7.98,4.25 +1741,4,12,16,6,4,2,1,2,1037,45,28.57,7.04,4 +1742,4,12,16,6,5,2,1,2,649,46.6,18.99,6.66,4.4 +1743,4,12,17,7,1,1,1,2,224,56.86,24.6,4.76,1.43 +1744,4,12,17,7,2,1,1,2,360,55,26.55,4.22,0.5 +1745,4,12,17,7,3,1,1,2,926,45.75,32.99,5.16,1.25 +1746,4,12,17,7,4,1,1,1,772,46.5,30.18,4.69,0.75 +1747,4,12,17,7,5,1,1,1,457,71.8,19.64,1.96,-1.8 +1748,4,12,18,1,1,1,1,1,185,61,15.86,1.8,-1.43 +1749,4,12,18,1,2,1,1,1,254,63,15.69,2.1,-0.75 +1750,4,12,18,1,3,1,1,1,863,54.5,27.76,4.92,1.25 +1751,4,12,18,1,4,1,1,1,715,46,24.14,5.63,2.5 +1752,4,12,18,1,5,1,1,1,414,65.2,11.59,2.72,0.6 +1753,4,12,19,2,1,2,1,1,127,83.71,10.81,-0.08,-3 +1754,4,12,19,2,2,2,1,1,879,71.25,19.31,1.87,-2 +1755,4,12,19,2,3,2,1,1,547,55.25,30.58,6.8,3.25 +1756,4,12,19,2,4,2,1,1,1099,45.5,21.72,9.86,9.5 +1757,4,12,19,2,5,2,1,2,751,51.2,17.06,9.3,7.8 +1758,4,12,20,3,1,2,1,2,131,57,3.22,8.65,8.43 +1759,4,12,20,3,2,2,1,2,1088,60,7.64,10.33,10.5 +1760,4,12,20,3,3,2,1,2,623,57,14.48,12.21,12.5 +1761,4,12,20,3,4,2,1,1,1234,59,9.66,11.5,11.75 +1762,4,12,20,3,5,2,1,1,674,65.2,1.93,9.3,9.2 +1763,1,12,21,4,1,2,1,2,148,74.14,5.29,8.92,8.57 +1764,1,12,21,4,2,2,1,2,957,87.25,20.12,10.8,10.75 +1765,1,12,21,4,3,2,1,3,226,88,39.43,13.86,14.25 +1766,1,12,21,4,4,2,1,3,671,97,36.21,13.15,13.5 +1767,1,12,21,4,5,2,1,1,658,90.4,30.58,15.5,16 +1768,1,12,22,5,1,2,1,1,142,82.29,9.2,12.01,12.28 +1769,1,12,22,5,2,2,1,2,898,87.25,4.83,9.39,9.5 +1770,1,12,22,5,3,2,1,2,694,64.5,0,13.62,14 +1771,1,12,22,5,4,2,1,2,1114,62.75,6.84,13.38,13.75 +1772,1,12,22,5,5,2,1,3,220,76.8,2.25,11.18,11.2 +1773,1,12,23,6,1,2,1,3,88,90.14,21.38,9.99,9.86 +1774,1,12,23,6,2,2,1,1,534,71.5,30.58,10.57,10.75 +1775,1,12,23,6,3,2,1,1,738,54,49.89,10.8,11 +1776,1,12,23,6,4,2,1,1,619,51.75,30.58,9.39,8.25 +1777,1,12,23,6,5,2,1,1,230,61.4,23.17,7.23,5 +1778,1,12,24,7,1,1,1,2,87,68.43,12.88,6.91,5.43 +1779,1,12,24,7,2,1,1,1,149,56.75,39.43,5.86,1.75 +1780,1,12,24,7,3,1,1,1,371,39,33.39,7.74,4 +1781,1,12,24,7,4,1,1,1,299,42,17.3,6.34,4.25 +1782,1,12,24,7,5,1,1,1,105,54.4,8.37,4.22,2.4 +1783,1,12,25,1,1,1,1,1,18,71,11.27,2.18,-0.17 +1784,1,12,25,1,2,1,1,1,75,82,18.51,2.81,-0.5 +1785,1,12,25,1,3,1,1,1,316,69,26.15,6.81,3.75 +1786,1,12,25,1,4,1,1,1,251,62.25,16.9,7.98,6.25 +1787,1,12,25,1,5,1,1,1,94,57.6,14.16,5.91,4 +1788,1,12,26,2,1,1,2,1,38,51.67,27.9,6.41,3 +1789,1,12,26,2,2,1,2,1,169,44.5,30.98,7.51,4.5 +1790,1,12,26,2,3,1,2,1,484,42.25,45.06,9.15,7 +1791,1,12,26,2,4,1,2,1,400,44.5,22.93,8.45,6.75 +1792,1,12,26,2,5,1,2,1,226,66.2,6.12,4.97,4 +1793,1,12,27,3,1,2,1,2,71,65.86,22.53,5.29,2.14 +1794,1,12,27,3,2,2,1,2,408,65.5,17.3,6.57,4.75 +1795,1,12,27,3,3,2,1,3,88,79,19.31,7.74,6.75 +1796,1,12,27,3,4,2,1,3,315,86,30.58,11.27,11.5 +1797,1,12,27,3,5,2,1,1,280,89.4,12.23,7.04,5.6 +1798,1,12,28,4,1,2,1,1,85,66.5,26.02,7.04,4.17 +1799,1,12,28,4,2,2,1,1,612,57,31.38,7.28,4 +1800,1,12,28,4,3,2,1,1,530,42.5,47.48,7.98,3.75 +1801,1,12,28,4,4,2,1,1,703,37,38.22,5.63,1.5 +1802,1,12,28,4,5,2,1,1,372,42.8,20.92,2.72,-1 +1803,1,12,29,5,1,2,1,1,102,52.71,15.17,1.67,-1.28 +1804,1,12,29,5,2,2,1,2,596,64,10.46,1.4,-1 +1805,1,12,29,5,3,2,1,2,525,55,8.05,4.69,3 +1806,1,12,29,5,4,2,1,1,801,55.25,14.89,6.1,4.25 +1807,1,12,29,5,5,2,1,1,399,62.4,13.84,5.54,3.6 +1808,1,12,30,6,1,2,1,1,112,70,10.81,3.55,1.57 +1809,1,12,30,6,2,2,1,1,612,72.5,11.67,4.22,2.25 +1810,1,12,30,6,3,2,1,1,820,55.75,14.89,8.45,7.25 +1811,1,12,30,6,4,2,1,1,999,51.75,13.28,10.56,10.25 +1812,1,12,30,6,5,2,1,2,456,63.6,22.53,8.36,6.2 +1813,1,12,31,7,1,1,1,2,142,66.57,26.44,10.26,10.14 +1814,1,12,31,7,2,1,1,1,286,77.25,8.05,9.62,9.25 +1815,1,12,31,7,3,1,1,1,1103,50.75,34.6,14.32,14.75 +1816,1,12,31,7,4,1,1,1,670,51.5,32.59,12.45,12.75 +1817,1,12,31,7,5,1,1,1,284,58.8,16.74,10.61,10.8 \ No newline at end of file