diff --git a/M1/Numerical Methods/TP2.ipynb b/M1/Numerical Methods/TP2.ipynb new file mode 100644 index 0000000..8bba08b --- /dev/null +++ b/M1/Numerical Methods/TP2.ipynb @@ -0,0 +1,93 @@ +{ + "cells": [ + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "# Automatic Differentiation\n", + "\n", + "### Neural Network\n", + "\n", + "Loss function: softmax layer in $\\mathbb{R}^3$\n", + "\n", + "Architecture: FC/ReLU 4-5-7-3" + ], + "id": "c897654e0a140cbd" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-03-24T13:10:01.794956Z", + "start_time": "2025-03-24T13:09:58.777694Z" + } + }, + "cell_type": "code", + "source": [ + "\n", + "import numpy as np\n", + "from sklearn.neural_network import MLPClassifier\n", + "from sklearn.datasets import make_classification\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score\n", + "\n", + "accuracies = []\n", + "\n", + "for _ in range(10):\n", + " X, y = make_classification(n_samples=1000, n_features=4, n_classes=3, n_clusters_per_class=1)\n", + "\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n", + " model = MLPClassifier(hidden_layer_sizes=(5, 7), activation='relu', max_iter=10000, solver='adam')\n", + " model.fit(X_train, y_train)\n", + "\n", + " y_pred = model.predict(X_test)\n", + " accuracies.append(accuracy_score(y_test, y_pred))\n", + "\n", + "print(f'Accuracy: {np.mean(accuracies) * 100:.0f}%')\n", + "print(f\"Max accuracy: {np.max(accuracies) * 100:.0f}%\")\n", + "print(f\"Min accuracy: {np.min(accuracies) * 100:.0f}%\")" + ], + "id": "70a4eb1d928b10d0", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 93%\n", + "Max accuracy: 100%\n", + "Min accuracy: 80%\n" + ] + } + ], + "execution_count": 21 + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "", + "id": "96b6d46883ed5570" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}