diff --git a/M2/Machine Learning/TP_1/2025_TP_1_M2_ISF.ipynb b/M2/Machine Learning/TP_1/2025_TP_1_M2_ISF.ipynb index 75612b0..982ff55 100644 --- a/M2/Machine Learning/TP_1/2025_TP_1_M2_ISF.ipynb +++ b/M2/Machine Learning/TP_1/2025_TP_1_M2_ISF.ipynb @@ -83899,7 +83899,7 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": null, "id": "1b7e6ff4", "metadata": {}, "outputs": [ @@ -84752,7 +84752,7 @@ "#Calcul de la fréquence\n", "plot_data[\"FREQ\"] = plot_data[\"NB\"] / plot_data[\"EXPO\"]\n", "plot_data[\"FREQ\"] = plot_data[\"FREQ\"].fillna(0)\n", - "plot_data\n", + "print(plot_data)\n", "\n", "#Représentation graphique\n", "fig = px.scatter(plot_data, x=\"GENRE\", y=\"FREQ\", title=\"Sinistralité selon le genre\")\n", @@ -84793,7 +84793,7 @@ "#Calcul de la fréquence\n", "plot_data[\"FREQ\"] = plot_data[\"NB\"] / plot_data[\"EXPO\"]\n", "plot_data[\"FREQ\"] = plot_data[\"FREQ\"].fillna(0)\n", - "plot_data\n", + "print(plot_data)\n", "\n", "#Représentation graphique\n", "fig = px.scatter(plot_data, x=\"ZONE_RISQUE\", y=\"FREQ\", title=\"Sinistralité selon la zone géographique\")\n", @@ -84810,7 +84810,7 @@ }, { "cell_type": "code", - "execution_count": 131, + "execution_count": null, "id": "2185245a", "metadata": {}, "outputs": [ @@ -85664,7 +85664,7 @@ "#Calcul de la fréquence\n", "plot_data[\"FREQ\"] = plot_data[\"NB\"] / plot_data[\"EXPO\"]\n", "plot_data[\"FREQ\"] = plot_data[\"FREQ\"].fillna(0)\n", - "plot_data\n", + "print(plot_data)\n", "\n", "#Représentation graphique\n", "fig = px.scatter(plot_data, x=\"ENERGIE\", y=\"FREQ\", title=\"Sinistralité selon le carburant\")\n", @@ -85681,7 +85681,7 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": null, "id": "2e2486e5", "metadata": {}, "outputs": [ @@ -86539,7 +86539,7 @@ "#Calcul du CM\n", "plot_data[\"CM\"] = plot_data[\"CHARGE\"] / plot_data[\"NB\"]\n", "plot_data[\"CM\"] = plot_data[\"CM\"].fillna(0)\n", - "plot_data\n", + "print(plot_data)\n", "\n", "#Représentation graphique\n", "fig = px.scatter(plot_data, x=\"VALEUR_DU_BIEN\", y=\"CM\", title=\"Coût moyen selon le prix\")\n", @@ -86556,7 +86556,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": null, "id": "63b97150", "metadata": {}, "outputs": [ @@ -87413,7 +87413,7 @@ "#Calcul du CM\n", "plot_data[\"CM\"] = plot_data[\"CHARGE\"] / plot_data[\"NB\"]\n", "plot_data[\"CM\"] = plot_data[\"CM\"].fillna(0)\n", - "plot_data\n", + "print(plot_data)\n", "\n", "#Représentation graphique\n", "fig = px.line(plot_data, x=\"ANNEE_CONSTRUCTION\", y=\"CM\", title=\"Coût moyen selon l'ancienneté du bien\")\n", @@ -87430,7 +87430,7 @@ }, { "cell_type": "code", - "execution_count": 134, + "execution_count": null, "id": "d1506c6c", "metadata": {}, "outputs": [ @@ -88284,7 +88284,7 @@ "#Calcul du CM\n", "plot_data[\"CM\"] = plot_data[\"CHARGE\"] / plot_data[\"NB\"]\n", "plot_data[\"CM\"] = plot_data[\"CM\"].fillna(0)\n", - "plot_data\n", + "print(plot_data)\n", "\n", "#Représentation graphique\n", "fig = px.scatter(plot_data, x=\"AGE_ASSURE_PRINCIPAL\", y=\"CM\", title=\"Coût moyen selon l'âge de l'assuré\")\n", @@ -88301,7 +88301,7 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": null, "id": "9f19cc0d", "metadata": {}, "outputs": [ @@ -89155,7 +89155,7 @@ "#Calcul du CM\n", "plot_data[\"CM\"] = plot_data[\"CHARGE\"] / plot_data[\"NB\"]\n", "plot_data[\"CM\"] = plot_data[\"CM\"].fillna(0)\n", - "plot_data\n", + "print(plot_data)\n", "\n", "#Représentation graphique\n", "fig = px.scatter(plot_data, x=\"GENRE\", y=\"CM\", title=\"Coût moyen selon l'âge de l'assuré\")\n", diff --git a/M2/Machine Learning/TP_2/2025_TP_2_M2_ISF.ipynb b/M2/Machine Learning/TP_2/2025_TP_2_M2_ISF.ipynb index 659992e..6da44da 100644 --- a/M2/Machine Learning/TP_2/2025_TP_2_M2_ISF.ipynb +++ b/M2/Machine Learning/TP_2/2025_TP_2_M2_ISF.ipynb @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "f6e62631", "metadata": {}, "outputs": [], @@ -56,15 +56,14 @@ "import seaborn as sns\n", "\n", "sns.set()\n", - "import matplotlib.pyplot as plt\n", - "import plotly.graph_objects as gp\n", - "from scipy.cluster.hierarchy import dendrogram, linkage\n", + "import matplotlib.pyplot as plt # noqa: E402\n", + "from scipy.cluster.hierarchy import dendrogram, linkage # noqa: E402\n", "\n", "# Statistiques\n", - "from scipy.stats import chi2_contingency\n", + "from scipy.stats import chi2_contingency # noqa: E402, F401\n", "\n", "# Machine Learning\n", - "from sklearn.cluster import AgglomerativeClustering, KMeans\n" + "from sklearn.cluster import AgglomerativeClustering, KMeans # noqa: E402\n" ] }, {