mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-02-13 16:07:39 +01:00
Add TP3
This commit is contained in:
BIN
Analyse Multidimensionnelle/TP1/.RData
Normal file
BIN
Analyse Multidimensionnelle/TP1/.RData
Normal file
Binary file not shown.
155
Analyse Multidimensionnelle/TP1/.Rhistory
Normal file
155
Analyse Multidimensionnelle/TP1/.Rhistory
Normal file
@@ -0,0 +1,155 @@
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
autos <- read.table("autos.csv", sep=";",header=TRUE)
|
||||
rownames(autos)<-autos$Modele
|
||||
autos$Modele<-NULL
|
||||
autos<-autos[,c(1:6,8)]
|
||||
library(FactoMineR)
|
||||
help(PCA)
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX") )
|
||||
summary(res.autos, nb.dec=2, nb.elements =Inf, nbind = Inf, ncp=3) #les résultats avec deux décimales, pour tous les individus, toutes les variables, sur les 3 premières CP
|
||||
eigenvalues <- res.autos$eig # pour faire l'eboulis des valeurs propres
|
||||
bplt <- barplot(eigenvalues[, 2], names.arg=1:nrow(eigenvalues),
|
||||
main = "Eboulis des valeurs propres",
|
||||
xlab = "Principal Components",
|
||||
ylab = "Percentage of variances",
|
||||
col ="steelblue",
|
||||
)
|
||||
lines(x = bplt, eigenvalues[, 2], type="b", pch=19, col = "red")
|
||||
alim <- read.table('alimentation.csv', sep=';', header=TRUE)
|
||||
rownames(alim)<-alim$ROW_LABEL
|
||||
alim$ROW_LABEL<-NULL
|
||||
corr <- cor(alim)
|
||||
corr <- cor(alim)
|
||||
corr
|
||||
res.alim<-PCA(alim, scale.unit=TRUE, quanti.sup = c())
|
||||
summary(res.alim, nb.dec = 2, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
help(cor)
|
||||
corr <- cor(alim)
|
||||
corr
|
||||
data(iris)
|
||||
head(iris)
|
||||
View(iris)
|
||||
corr.iris <- cor(iris)
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), quali.sup = c("OUVR"))
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), quali.sup = c("OUVR", "PRIN"))
|
||||
library(FactoMineR)
|
||||
help(PCA)
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), ind = c("OUVR", "PRIN"))
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), ind.sup = c("OUVR", "PRIN"))
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), ind.sup = c(3, 7))
|
||||
summary(res.alim2, nb.dec = 2, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
res.iris <- PCA(iris, scale.unit = TRUE)
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quanti.sup = c('Species'))
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, ind.sup = c('Species'))
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
summary(res.iris, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), ind.sup = c(8))
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
autos <- read.table("autos.csv", sep=";",header=TRUE)
|
||||
rownames(autos)<-autos$Modele
|
||||
autos$Modele<-NULL
|
||||
autos<-autos[,c(1:6,8)]
|
||||
library(FactoMineR)
|
||||
help(PCA)
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX") )
|
||||
summary(res.autos, nb.dec=2, nb.elements =Inf, nbind = Inf, ncp=3) #les résultats avec deux décimales, pour tous les individus, toutes les variables, sur les 3 premières CP
|
||||
eigenvalues <- res.autos$eig # pour faire l'eboulis des valeurs propres
|
||||
bplt <- barplot(eigenvalues[, 2], names.arg=1:nrow(eigenvalues),
|
||||
main = "Eboulis des valeurs propres",
|
||||
xlab = "Principal Components",
|
||||
ylab = "Percentage of variances",
|
||||
col ="steelblue",
|
||||
)
|
||||
lines(x = bplt, eigenvalues[, 2], type="b", pch=19, col = "red")
|
||||
alim <- read.table('alimentation.csv', sep=';', header=TRUE)
|
||||
rownames(alim)<-alim$ROW_LABEL
|
||||
alim$ROW_LABEL<-NULL
|
||||
help(cor)
|
||||
corr <- cor(alim)
|
||||
corr
|
||||
res.alim<-PCA(alim, scale.unit=TRUE, quanti.sup = c())
|
||||
summary(res.alim, nb.dec = 2, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), ind.sup = c(8))
|
||||
summary(res.alim2, nb.dec = 2, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
data(iris)
|
||||
head(iris)
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
summary(res.iris, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
autos <- read.table("autos.csv", sep=";",header=TRUE)
|
||||
rownames(autos)<-autos$Modele
|
||||
autos$Modele<-NULL
|
||||
autos<-autos[,c(1:6,8)]
|
||||
library(FactoMineR)
|
||||
help(PCA)
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX"))
|
||||
plot.CPA(res.iris)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = none)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = None)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = NONE)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = NULL)
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX"))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = NULL)
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX"))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = "None")
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX"))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = NA)
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX"))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = "none")
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX"))
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5)
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = "none")
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = "none")
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = "none")
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = "none")
|
||||
dimdesc(res.iris)
|
||||
knitr::opts_chunk$set(echo = TRUE)
|
||||
autos <- read.table("autos.csv", sep=";",header=TRUE)
|
||||
rownames(autos)<-autos$Modele
|
||||
autos$Modele<-NULL
|
||||
autos<-autos[,c(1:6,8)]
|
||||
library(FactoMineR)
|
||||
help(PCA)
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX"))
|
||||
summary(res.autos, nb.dec=2, nb.elements =Inf, nbind = Inf, ncp=3) #les résultats avec deux décimales, pour tous les individus, toutes les variables, sur les 3 premières CP
|
||||
eigenvalues <- res.autos$eig # pour faire l'eboulis des valeurs propres
|
||||
bplt <- barplot(eigenvalues[, 2], names.arg=1:nrow(eigenvalues),
|
||||
main = "Eboulis des valeurs propres",
|
||||
xlab = "Principal Components",
|
||||
ylab = "Percentage of variances",
|
||||
col ="steelblue",
|
||||
)
|
||||
lines(x = bplt, eigenvalues[, 2], type="b", pch=19, col = "red")
|
||||
alim <- read.table('alimentation.csv', sep=';', header=TRUE)
|
||||
rownames(alim)<-alim$ROW_LABEL
|
||||
alim$ROW_LABEL<-NULL
|
||||
help(cor)
|
||||
corr <- cor(alim)
|
||||
corr
|
||||
res.alim<-PCA(alim, scale.unit=TRUE, quanti.sup = c())
|
||||
summary(res.alim, nb.dec = 2, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), ind.sup = c(8))
|
||||
summary(res.alim2, nb.dec = 2, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
data(iris)
|
||||
head(iris)
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = "none")
|
||||
dimdesc(res.iris)
|
||||
summary(res.iris, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
@@ -59,7 +59,7 @@ help(PCA)
|
||||
|
||||
|
||||
```{r,echo=FALSE}
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX") )
|
||||
res.autos<-PCA(autos, scale.unit=TRUE, quanti.sup = c("PRIX"))
|
||||
```
|
||||
```{r}
|
||||
summary(res.autos, nb.dec=2, nb.elements =Inf, nbind = Inf, ncp=3) #les résultats avec deux décimales, pour tous les individus, toutes les variables, sur les 3 premières CP
|
||||
@@ -134,7 +134,7 @@ summary(res.alim, nb.dec = 2, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
* Relancez l'ACP en prenant en compte cette modification
|
||||
|
||||
```{r}
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), ind.sup = c(3, 7))
|
||||
res.alim2 <- PCA(alim, scale.unit=TRUE, quanti.sup = c(), ind.sup = c(8))
|
||||
```
|
||||
|
||||
```{r}
|
||||
@@ -151,6 +151,8 @@ head(iris)
|
||||
```
|
||||
```{r}
|
||||
res.iris <- PCA(iris, scale.unit = TRUE, quali.sup = c('Species'))
|
||||
plot.PCA(res.iris, choix = "ind", habillage = 5, label = "none")
|
||||
dimdesc(res.iris)
|
||||
```
|
||||
```{r}
|
||||
summary(res.iris, nbelements = Inf, nbind = Inf, ncp = 3)
|
||||
|
||||
Reference in New Issue
Block a user