mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-14 18:59:59 +01:00
Refactor code for improved readability and consistency across R Markdown files
- Updated comments and code formatting in `3-td_ggplot2 - enonce.Rmd` for clarity. - Enhanced code structure in `4-td_graphiques - enonce.Rmd` by organizing options and library calls. - Replaced pipe operator `%>%` with `|>` in `Code_Lec3.Rmd` for consistency with modern R syntax. - Cleaned up commented-out code and ensured consistent spacing in ggplot calls.
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -297,7 +297,7 @@ On présente ci-dessous un aperçu des données.
|
||||
fold <- getwd()
|
||||
|
||||
# Load data
|
||||
# load(paste0(fold, "/M2/Data Visualisation/tp1", "/data/datafreMPTL.RData")) # VSCode # nolint
|
||||
# load(paste0(fold, "/M2/Data Visualisation/tp1", "/data/datafreMPTL.RData")) # VSCode
|
||||
load(paste0(fold, "/data/datafreMPTL.RData")) # RStudio
|
||||
paged_table(dat, options = list(rows.print = 15))
|
||||
```
|
||||
@@ -505,7 +505,7 @@ df_plot <- dat |>
|
||||
p3 <- ggplot(df_plot, aes(x = DrivAge, y = freq)) +
|
||||
geom_point() +
|
||||
geom_smooth() +
|
||||
labs(x = "Age du conducteur", y = "Frequence") +
|
||||
labs(x = "Age du conducteur", y = "Frequence") +
|
||||
theme_bw()
|
||||
p3
|
||||
```
|
||||
@@ -642,12 +642,16 @@ plot_pairwise_disc <- function(df, var1, var2) {
|
||||
|
||||
df |>
|
||||
group_by(varx, vary) |>
|
||||
summarize(exp = sum(Exposure),
|
||||
nb_claims = sum(ClaimNb),
|
||||
freq = sum(ClaimNb) / sum(Exposure), .groups = "drop") |>
|
||||
summarize(
|
||||
exp = sum(Exposure),
|
||||
nb_claims = sum(ClaimNb),
|
||||
freq = sum(ClaimNb) / sum(Exposure), .groups = "drop"
|
||||
) |>
|
||||
ggplot(aes(x = varx, y = freq, colour = vary, group = vary), alpha = 0.3) +
|
||||
geom_point() + geom_line() + theme_bw() +
|
||||
labs(x = var1, y = "Frequence", colour = var2)
|
||||
geom_point() +
|
||||
geom_line() +
|
||||
theme_bw() +
|
||||
labs(x = var1, y = "Frequence", colour = var2)
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
@@ -23,8 +23,13 @@ editor_options:
|
||||
|
||||
```{r setup, include=FALSE}
|
||||
## Global options
|
||||
knitr::opts_chunk$set(cache = FALSE, warning = FALSE, message = FALSE, fig.retina = 2)
|
||||
options(encoding = 'UTF-8')
|
||||
knitr::opts_chunk$set(
|
||||
cache = FALSE,
|
||||
warning = FALSE,
|
||||
message = FALSE,
|
||||
fig.retina = 2
|
||||
)
|
||||
options(encoding = "UTF-8")
|
||||
```
|
||||
|
||||
|
||||
@@ -33,11 +38,11 @@ options(encoding = 'UTF-8')
|
||||
library(lattice)
|
||||
library(grid)
|
||||
library(ggplot2)
|
||||
require(gridExtra)
|
||||
require(gridExtra)
|
||||
library(locfit)
|
||||
library(scales)
|
||||
library(formattable)
|
||||
library(RColorBrewer)
|
||||
library(RColorBrewer)
|
||||
library(plotly)
|
||||
library(dplyr)
|
||||
library(tidyr)
|
||||
@@ -88,7 +93,7 @@ de vie par pays sur la période 1952-1990. Les observations ont lieu tous les 5
|
||||
Dans un premier temps, il faut installer le package et le charger.
|
||||
|
||||
```{r}
|
||||
# install.packages("gapminder")
|
||||
# install.packages("gapminder") #nolint
|
||||
library(gapminder)
|
||||
```
|
||||
|
||||
@@ -140,7 +145,7 @@ pouvez observer entre `gdpPercap` et `lifeExp`.
|
||||
:::
|
||||
|
||||
```{r}
|
||||
ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp)) +
|
||||
ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp)) +
|
||||
geom_point()
|
||||
```
|
||||
|
||||
@@ -158,7 +163,7 @@ visualisations permettant de comparer des distributions.
|
||||
|
||||
```{r}
|
||||
ggplot(data = gapminder, aes(x = lifeExp)) +
|
||||
geom_density()
|
||||
geom_density()
|
||||
```
|
||||
|
||||
|
||||
@@ -171,16 +176,16 @@ Il faut au préalable récupérer un fond de carte (ici de l'année 2016). Nous
|
||||
les données `gapminder` de 2007.
|
||||
|
||||
```{r}
|
||||
library(giscoR)
|
||||
library(giscoR)
|
||||
library(sf)
|
||||
|
||||
world <- gisco_countries
|
||||
world <- subset(world, NAME_ENGL != "Antarctica") # Remove Antartica
|
||||
|
||||
# Merge data
|
||||
world_df <- gapminder %>%
|
||||
world_df <- gapminder |>
|
||||
filter(year == "2007")
|
||||
world_df <- world %>%
|
||||
world_df <- world |>
|
||||
left_join(world_df, by = c("NAME_ENGL" = "country"))
|
||||
|
||||
ggplot(world_df) +
|
||||
@@ -231,7 +236,7 @@ accidents <- read_csv("data/accidentsVelo.csv",
|
||||
date = col_date(format = "%Y-%m-%d")))
|
||||
|
||||
# few ajustements
|
||||
accidents <- accidents %>%
|
||||
accidents <- accidents |>
|
||||
mutate(mois = factor(mois),
|
||||
jour = factor(jour),
|
||||
dep = factor(dep),
|
||||
@@ -247,8 +252,8 @@ correct <- paste0("0", str_sub(correct, 1, 1), ":",
|
||||
accidents$hrmn[issue] <- correct
|
||||
|
||||
# Extract hour
|
||||
accidents <- accidents %>%
|
||||
mutate(hour = paste(date, hrmn, sep = " ")) %>%
|
||||
accidents <- accidents |>
|
||||
mutate(hour = paste(date, hrmn, sep = " ")) |>
|
||||
mutate(hour = strptime(hour, "%Y-%m-%d %H:%M")$hour)
|
||||
|
||||
# mapping table for french departments
|
||||
@@ -327,8 +332,8 @@ library(mapview)
|
||||
library(sf)
|
||||
|
||||
## Remove NA
|
||||
df_map_dyn <- accidents %>%
|
||||
filter(???) %>%
|
||||
df_map_dyn <- accidents |>
|
||||
filter(???) |>
|
||||
na.omit()
|
||||
|
||||
# Make map and print it
|
||||
@@ -354,27 +359,27 @@ Voici un premier code à trou pour vous aider.
|
||||
|
||||
```{r, eval = F}
|
||||
# get french map - level nuts2
|
||||
fr <- gisco_get_nuts(resolution = "20", country = ???, nuts_level = ???) %>%
|
||||
fr <- gisco_get_nuts(resolution = "20", country = ???, nuts_level = ???) |>
|
||||
mutate(res = "20M")
|
||||
|
||||
# Remove white-space to avoid errors.
|
||||
library(stringr)
|
||||
departements_francais <- departements_francais %>%
|
||||
departements_francais <- departements_francais |>
|
||||
mutate(dep_name = str_trim(dep_name))
|
||||
|
||||
fr <- fr %>%
|
||||
fr <- fr |>
|
||||
mutate(NUTS_NAME = str_trim(NUTS_NAME))
|
||||
|
||||
# Merge and remove departements outside metropolitan France
|
||||
fr_map <- fr %>%
|
||||
left_join(???) %>%
|
||||
fr_map <- fr |>
|
||||
left_join(???) |>
|
||||
filter(! dep %in% c("971", ???) )
|
||||
|
||||
# count the number of accidents
|
||||
df_acc <- ???
|
||||
|
||||
# merge statistics with the map
|
||||
map_acc <- fr_map %>%
|
||||
map_acc <- fr_map |>
|
||||
left_join(df_acc, by = c("dep" = "dep"))
|
||||
|
||||
# map with all accidents
|
||||
|
||||
Reference in New Issue
Block a user