mirror of
https://github.com/ArthurDanjou/ArtStudies.git
synced 2026-01-26 23:54:25 +01:00
Refactor code for improved readability and consistency across R Markdown files
- Updated comments and code formatting in `3-td_ggplot2 - enonce.Rmd` for clarity. - Enhanced code structure in `4-td_graphiques - enonce.Rmd` by organizing options and library calls. - Replaced pipe operator `%>%` with `|>` in `Code_Lec3.Rmd` for consistency with modern R syntax. - Cleaned up commented-out code and ensured consistent spacing in ggplot calls.
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
```{r}
|
||||
setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP1-bis')
|
||||
setwd("/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP1-bis")
|
||||
|
||||
library(tidyverse)
|
||||
options(scipen = 999, digits = 5)
|
||||
@@ -56,8 +56,8 @@ summary(model)
|
||||
coef(model)
|
||||
```
|
||||
```{r}
|
||||
data <- data %>%
|
||||
mutate(yhat = beta0 + beta1 * poids) %>%
|
||||
data <- data |>
|
||||
mutate(yhat = beta0 + beta1 * poids) |>
|
||||
mutate(residuals = cholesterol - yhat)
|
||||
|
||||
data
|
||||
@@ -71,8 +71,8 @@ ggplot(data, aes(x = poids, y = cholesterol)) +
|
||||
```{r}
|
||||
mean(data[, "cholesterol"])
|
||||
mean(data[, "yhat"])
|
||||
mean(data[, "residuals"]) %>% round(10)
|
||||
cov(data[, "residuals"], data[, "poids"]) %>% round(10)
|
||||
mean(data[, "residuals"]) |> round(10)
|
||||
cov(data[, "residuals"], data[, "poids"]) |> round(10)
|
||||
(RSS <- sum((data[, "residuals"])^2))
|
||||
(TSS <- sum((y - mean(y))^2))
|
||||
TSS - beta1 * Sxy
|
||||
@@ -117,10 +117,10 @@ t <- qt(0.975, dof)
|
||||
sigma_hat <- sigma(model)
|
||||
n <- nrow(data)
|
||||
|
||||
data <- data %>%
|
||||
data <- data |>
|
||||
mutate(error = t *
|
||||
sigma_hat *
|
||||
sqrt(1 / n + (poids - mean(poids))^2 / RSS)) %>%
|
||||
sqrt(1 / n + (poids - mean(poids))^2 / RSS)) |>
|
||||
mutate(conf.low = yhat - error, conf.high = yhat + error, error = NULL)
|
||||
|
||||
ggplot(data, aes(x = poids, y = cholesterol)) +
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
```{r}
|
||||
setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP2-bis')
|
||||
setwd("/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP2-bis")
|
||||
|
||||
library(tidyverse)
|
||||
library(GGally)
|
||||
@@ -10,9 +10,9 @@ library(qqplotr)
|
||||
options(scipen = 999, digits = 5)
|
||||
```
|
||||
```{r}
|
||||
data <- read.csv('data02.csv', sep = ',', header = TRUE, dec = ".")
|
||||
data %>%
|
||||
mutate(type = factor(type, levels = c("maths", "english", "final"), labels = c("maths", "english", "final"))) %>%
|
||||
data <- read.csv("data02.csv", sep = ",", header = TRUE, dec = ".")
|
||||
data |>
|
||||
mutate(type = factor(type, levels = c("maths", "english", "final"), labels = c("maths", "english", "final"))) |>
|
||||
ggplot(aes(x = note)) +
|
||||
facet_wrap(vars(type), scales = "free_x") +
|
||||
geom_histogram(binwidth = 4, color = "black", fill = "grey80") +
|
||||
@@ -21,8 +21,8 @@ data %>%
|
||||
```
|
||||
```{r}
|
||||
data_wide <- pivot_wider(data, names_from = type, values_from = note)
|
||||
data_wide %>%
|
||||
select(-id) %>%
|
||||
data_wide |>
|
||||
select(-id) |>
|
||||
ggpairs() + theme_bw(14)
|
||||
```
|
||||
```{r}
|
||||
@@ -67,12 +67,12 @@ linearHypothesis(model, "maths - english = 0")
|
||||
|
||||
# Submodel testing
|
||||
```{r}
|
||||
data_predict <- predict(model, newdata = expand.grid(maths = seq(70, 90, 2), english = c(75, 85)), interval = "confidence") %>%
|
||||
as_tibble() %>%
|
||||
data_predict <- predict(model, newdata = expand.grid(maths = seq(70, 90, 2), english = c(75, 85)), interval = "confidence") |>
|
||||
as_tibble() |>
|
||||
bind_cols(expand.grid(maths = seq(70, 90, 2), english = c(75, 85)))
|
||||
|
||||
data_predict %>%
|
||||
mutate(english = as.factor(english)) %>%
|
||||
data_predict |>
|
||||
mutate(english = as.factor(english)) |>
|
||||
ggplot(aes(x = maths, y = fit, color = english, fill = english, label = round(fit, 1))) +
|
||||
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.2, show.legend = FALSE) +
|
||||
geom_point(size = 2) +
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
```{r}
|
||||
setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP2')
|
||||
setwd("/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP2")
|
||||
```
|
||||
|
||||
# Question 1 : Import dataset and check variables
|
||||
@@ -9,8 +9,8 @@ library(dplyr)
|
||||
cepages <- read.csv("Cepages B TP2.csv", header = TRUE, sep = ";", dec = ",")
|
||||
cepages$Couleur <- as.factor(cepages$Couleur)
|
||||
cepages$Origine <- as.factor(cepages$Origine)
|
||||
cepages <- cepages %>% mutate(across(where(is.character), as.numeric))
|
||||
cepages <- cepages %>% mutate(across(where(is.integer), as.numeric))
|
||||
cepages <- cepages |> mutate(across(where(is.character), as.numeric))
|
||||
cepages <- cepages |> mutate(across(where(is.integer), as.numeric))
|
||||
paged_table(cepages)
|
||||
```
|
||||
|
||||
@@ -39,7 +39,7 @@ tapply(cepages$pH, list(cepages$Couleur, cepages$Origine), mean)
|
||||
library(ggplot2)
|
||||
|
||||
ggplot(cepages, aes(x = AcTot, y = pH, color = Couleur)) +
|
||||
geom_point(col = 'red', size = 0.5) +
|
||||
geom_point(col = "red", size = 0.5) +
|
||||
geom_smooth(method = "lm", se = F)
|
||||
|
||||
ggplot(cepages, aes(y = pH, x = AcTot, colour = Couleur, fill = Couleur)) +
|
||||
@@ -50,8 +50,8 @@ ggplot(cepages, aes(y = pH, x = AcTot, colour = Couleur, fill = Couleur)) +
|
||||
|
||||
```{r}
|
||||
ggplot(cepages, aes(x = AcTot, y = pH, color = Origine)) +
|
||||
geom_smooth(method = 'lm', se = F) +
|
||||
geom_point(col = 'red', size = 0.5)
|
||||
geom_smooth(method = "lm", se = F) +
|
||||
geom_point(col = "red", size = 0.5)
|
||||
|
||||
ggplot(cepages, aes(y = pH, x = AcTot, colour = Origine, fill = Origine)) +
|
||||
geom_boxplot(alpha = 0.5, outlier.alpha = 0)
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
```{r}
|
||||
setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP3')
|
||||
setwd("/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP3")
|
||||
```
|
||||
|
||||
# Question 1 : Import dataset and check variables
|
||||
@@ -9,8 +9,8 @@ library(dplyr)
|
||||
ozone <- read.table("ozone.txt", header = TRUE, sep = " ", dec = ".")
|
||||
ozone$vent <- as.factor(ozone$vent)
|
||||
ozone$temps <- as.factor(ozone$temps)
|
||||
ozone <- ozone %>% mutate(across(where(is.character), as.numeric))
|
||||
ozone <- ozone %>% mutate(across(where(is.integer), as.numeric))
|
||||
ozone <- ozone |> mutate(across(where(is.character), as.numeric))
|
||||
ozone <- ozone |> mutate(across(where(is.integer), as.numeric))
|
||||
paged_table(ozone)
|
||||
```
|
||||
|
||||
@@ -25,8 +25,8 @@ summary(model_T12)
|
||||
library(ggplot2)
|
||||
|
||||
ggplot(ozone, aes(x = T12, y = maxO3)) +
|
||||
geom_smooth(method = 'lm', se = T) +
|
||||
geom_point(col = 'red', size = 0.5) +
|
||||
geom_smooth(method = "lm", se = T) +
|
||||
geom_point(col = "red", size = 0.5) +
|
||||
labs(title = "maxO3 ~ T12") +
|
||||
theme_minimal()
|
||||
```
|
||||
@@ -130,5 +130,4 @@ new_obs <- list(
|
||||
maxO3v = 85
|
||||
)
|
||||
predict(model_backward, new_obs, interval = "confidence")
|
||||
|
||||
```
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
```{r}
|
||||
setwd('/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP4')
|
||||
setwd("/Users/arthurdanjou/Workspace/studies/M1/General Linear Models/TP4")
|
||||
|
||||
set.seed(0911)
|
||||
library(ggplot2)
|
||||
@@ -22,19 +22,19 @@ library(lmtest) # LRtest
|
||||
library(survey) # Wald test
|
||||
library(vcdExtra) # deviance test
|
||||
|
||||
library(rsample) # for data splitting
|
||||
library(rsample) # for data splitting
|
||||
library(glmnet)
|
||||
library(nnet) # multinom, glm
|
||||
library(caret)
|
||||
library(ROCR)
|
||||
#library(PRROC) autre package pour courbe roc et courbe pr
|
||||
# library(PRROC) autre package pour courbe roc et courbe pr
|
||||
library(ISLR) # dataset for statistical learning
|
||||
|
||||
ggplot2::theme_set(ggplot2::theme_light())# Set the graphical theme
|
||||
ggplot2::theme_set(ggplot2::theme_light()) # Set the graphical theme
|
||||
```
|
||||
```{r}
|
||||
car <- read.table('car_income.txt', header = TRUE, sep = ';')
|
||||
car %>% rmarkdown::paged_table()
|
||||
car <- read.table("car_income.txt", header = TRUE, sep = ";")
|
||||
car |> rmarkdown::paged_table()
|
||||
summary(car)
|
||||
```
|
||||
|
||||
@@ -44,7 +44,7 @@ summary(model_purchase)
|
||||
```
|
||||
|
||||
```{r}
|
||||
p1 <- car %>%
|
||||
p1 <- car |>
|
||||
ggplot(aes(y = purchase, x = income + age)) +
|
||||
geom_point(alpha = .15) +
|
||||
geom_smooth(method = "lm") +
|
||||
@@ -53,7 +53,7 @@ p1 <- car %>%
|
||||
ylab("Probability of Purchase")
|
||||
|
||||
|
||||
p2 <- car %>%
|
||||
p2 <- car |>
|
||||
ggplot(aes(y = purchase, x = income + age)) +
|
||||
geom_point(alpha = .15) +
|
||||
geom_smooth(method = "glm", method.args = list(family = "binomial")) +
|
||||
@@ -66,9 +66,9 @@ ggplotly(p2)
|
||||
```
|
||||
|
||||
```{r}
|
||||
car <- car %>%
|
||||
car <- car |>
|
||||
mutate(old = ifelse(car$age > 3, 1, 0))
|
||||
car <- car %>%
|
||||
car <- car |>
|
||||
mutate(rich = ifelse(car$income > 40, 1, 0))
|
||||
model_old <- glm(purchase ~ age + income + rich + old, data = car, family = "binomial")
|
||||
summary(model_old)
|
||||
@@ -90,5 +90,5 @@ pima.te$pred <- as.factor(pima.te$pred)
|
||||
pima.te$type <- as.factor(pima.te$type)
|
||||
|
||||
# Confusion matrix
|
||||
confusionMatrix(data = pima.te$type, reference = pima.te$pred, positive = 'Yes')
|
||||
confusionMatrix(data = pima.te$type, reference = pima.te$pred, positive = "Yes")
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user